Satz von Poynting

Energieerhaltungssatz für elektromagnetische Felder
(Weitergeleitet von Poynting-Satz)

Der Satz von Poynting (auch Poynting-Theorem genannt) beschreibt die Energiebilanz in der Elektrodynamik. Damit wird der Energieerhaltungssatz auf elektromagnetische Felder verallgemeinert. Seine Formulierung wird dem britischen Physiker John Henry Poynting zugeschrieben. Stark vereinfacht trägt er in sich die Aussage, dass ein elektromagnetisches Feld Arbeit verrichten kann, wenn es dabei „schwächer“ wird. Mathematisch kann er, wie auch die Maxwellschen Gleichungen, sowohl in einer differenziellen als auch in einer integralen Schreibweise angegeben werden.

Formulierung

Bearbeiten

In der differentiellen Form lautet der Satz von Poynting

 .

Dabei bezeichnen:

  •   die Energiedichte des elektromagnetischen Feldes,
  •   den Poynting-Vektor,
  •   die elektrische Stromdichte,
  •   die elektrische beziehungsweise magnetische Feldstärke und
  •   die elektrische beziehungsweise magnetische Flussdichte.

In der integralen Form lautet er, nachdem die Volumentintegration über die Divergenz des Poynting-Vektors mithilfe des Satzes von Gauß in ein Oberflächenintegral überführt wurde:

 

Herleitung

Bearbeiten

Ausgangspunkt ist die Energiedichte des elektromagnetischen Feldes

 .

Im Folgenden sei ein lineares und isotropes Medium angenommen, sodass die Zusammenhänge   und   gelten. Dann vereinfacht sich die Energiedichte zu

 ,

wobei   die Lichtgeschwindigkeit im Medium ist. Die zeitliche Änderung der Energiedichte ist somit

 .

Nach den Maxwell-Gleichungen gilt   (Durchflutungsgesetz) und   (Induktionsgesetz). In die obige Gleichung eingesetzt ergibt sich

 

und mithilfe der Vektoridentität   folgt

 .

Durch   und der Definition des Poynting-Vektors   folgt der Satz von Poynting.

Interpretation

Bearbeiten

Der Satz von Poynting besagt, dass die Änderung der Energie in elektromagnetischen Feldern in einem Volumen  ,  , auf zwei Arten geschehen kann: zum einen durch einen Energiestrom über die Grenzen dieses Volumens hinweg, was durch den Divergenz- beziehungsweise Flächenintegral-Term   ausgedrückt wird; zum anderen durch das Verrichten von Arbeit, ausgedrückt durch den Term  . Letzterer Beitrag wird auch Joulesche Wärme genannt. Dieser Term kann mithilfe des Leistungssatzes wie folgt umformuliert werden:

 .

Hierbei wurde die Stromdichte als Produkt der Ladungsdichte   und der Geschwindigkeit   ausgedrückt, die Ladungsdichte zur Gesamtladung   aufintegriert, das Coulombsche Gesetz angewandt, um die Kraft   auf eine Ladung zu bestimmen, und schließlich der Leistungssatz angewandt, der Kraft und Geschwindigkeit mit der Leistung   verknüpft.

Eindeutigkeit des Poynting-Vektors

Bearbeiten

Da nur die Divergenz von   relevant ist, könnte prinzipiell auch die Rotation   einer beliebigen Funktion   zu ihm hinzugefügt werden, da sie unter der Einwirkung der Divergenz verschwindet. Es gibt also formal unendlich viele vektorwertige Funktionen  , die den Satz von Poynting erfüllen, aber nur   lässt sich aus den Maxwell-Gleichungen gewinnen und ist damit physikalisch sinnvoll. Eine physikalische Interpretation eines so modifizierten   als Leistungsfluss ist dann allerdings nicht mehr möglich.

Beispiel: Ohmscher Widerstand

Bearbeiten

Betrachtet man einen zylindrischen Leiter mit Radius   und Länge  , der vom zeitlich konstanten Strom   durchflossen wird, wobei über die Länge des Leiters die Spannung   proportional zur Länge abfällt. Der Leiter ist also ein Ohmscher Widerstand. Die Oberfläche, auf der der Poynting-Vektor, also die elektrische und magnetische Feldstärke betrachtet wird, ist die Mantelfläche   des Zylinders.

Für den Betrag der elektrischen Feldstärke kann näherungsweise   wie bei einem Plattenkondensator verwendet werden.

Die magnetische Feldstärke auf der Mantelfläche ist die eines stromdurchflossenen Leiters,  .

Die Orientierung der elektrischen Feldstärke folgt der Länge des Zylinders, die magnetische Feldstärke dem Umfang. Sie stehen also immer senkrecht aufeinander und liegen in der betrachteten Fläche.

Der Betrag des Poynting-Vektors lautet

 .

Die Richtung des Vektors zeigt in den Leiter hinein.

Integriert man den Poynting-Vektor über die Mantelfläche, erhält man die umgesetzte Leistung:

 .

Das negative Vorzeichen trägt der Orientierung einer geschlossenen Fläche Rechnung, die immer nach außen ist.

Die gleichen Betrachtungen kann man für eine Batterie durchführen. Wenn sie Strom und damit Energie abgibt, fließt in der Batterie der Strom gegen das Spannungsgefälle. Das Ergebnis unterscheidet sich in den obigen Formeln nur im Vorzeichen der Leistung. Hieran kann man den Energiestrom für einen einfachen Stromkreis aus Widerstand und Batterie so erklären: Die in der Batterie gespeicherte chemische Energie treibt einen Strom gegen das Spannungsgefälle, daher wird elektromagnetische Energie in alle Raumrichtungen in die entstehenden elektrischen und magnetischen Felder abgegeben (nur nicht in die stromführenden Leitungen). Der Widerstand nimmt diese Energie aus dem umgebenden Raum auf und setzt sie dann z. B. in thermische Energie um. Solange in dem Stromkreis Strom fließt, ist die Batterie eine Quelle elektrischer Energie (die in den Feldern gespeichert ist), der Widerstand eine Senke.

Siehe auch

Bearbeiten

Literatur

Bearbeiten
  • John David Jackson: Klassische Elektrodynamik. 4., überarbeitete Auflage. de Gruyter, Berlin 2006, ISBN 3-11-018970-4