Ein Probit ist in der Statistik die zu einer Wahrscheinlichkeit gebildete Größe , wobei die Umkehrfunktion der Verteilungsfunktion der Standardnormalverteilung bezeichnet. Unter der Probit-Transformation versteht man die Transformation von Wahrscheinlichkeiten in Probits. Diese Transformation wird im Probit-Modell, einem speziellen verallgemeinerten linearen Modell, zur Spezifikation der Kopplungsfunktion verwendet.

Darstellung der Probit-Funktion

In der Biometrie werden in der sogenannten Probitanalyse zur Untersuchung von Dosis-Wirkung-Beziehungen die Begriffe Probit und Probit-Transformation in einer verwandten, aber abweichenden Bedeutung verwendet.

Definition

Bearbeiten

Für eine Wahrscheinlichkeit   heißt

 

Probit von  , wobei   die Verteilungsfunktion der Standardnormalverteilung bezeichnet. Die Funktion   heißt auch Probit-Funktion. Wenn Wahrscheinlichkeiten   in   transformiert werden, spricht man auch von einer Probit-Transformation.

Eigenschaften

Bearbeiten
  • Es gilt
 
  • Die Probit-Funktion besitzt die Symmetrieeigenschaft
 
  • Die Probit-Funktion ist streng monoton und hat die Grenzwerte
 
  • Die Probit-Funktion ist differenzierbar und hat die Ableitungsfunktion
 
wobei   die Dichtefunktion der Standardnormalverteilung bezeichnet.
  • Die Probit-Funktion ist invertierbar. Ihre Umkehrfunktion ist die Verteilungsfunktion der Standardnormalverteilung.
  • Formal ist   das  -Quantil der Standardnormalverteilung und die Probit-Funktion ist die Quantilfunktion einer standardnormalverteilten Zufallsvariablen.

Anwendungen

Bearbeiten
  • Die Bezeichnung Probit hat sich in bestimmten Anwendungsgebieten der Statistik durchgesetzt, auch als sprachliche Parallele zu Logit.
  • Mit binären Regressionsmodellen wird die Wahrscheinlichkeitsverteilung einer erklärten binären Variable mit den möglichen Werten 0 und 1 durch eine affin lineare Funktion erklärender Variablen bestimmt. Im Probit-Modell[1][2] wird die Probit-Funktion zur Verbindung der Verteilung der erklärten Variablen mit den erklärenden Variablen verwendet,
 
Dabei ist   der  -te beobachtete Werte der  -ten erklärenden Variablen und   ist die Anzahl der Beobachtungen. Eine häufig verwendete Alternative zum Probit-Modell ist das Logit-Modell, bei dem die Logit-Funktion   an die Stelle der Probit-Funktion tritt.
  • Mit ordinalen Regressionsmodellen wird die Wahrscheinlichkeitsverteilung einer erklärten ordinalen Variable, die eine endliche Anzahl von Kategorien hat, durch eine affin lineare Funktion erklärender Variablen bestimmt. Im ordinalen Probit-Modell werden in der Variante des kumulativen Modells für die erklärte kategoriale Variable mit   Kategorien die Wahrscheinlichkeiten   für   als
 
modelliert.[3] Dabei gilt  . Wie im binären Probit-Modell kann anstelle der Probit-Funktion die Logit-Funktion verwendet werden.
  • Im Bereich der Ökonometrie wird das Probit-Modell gerne verwendet, da es als ein Schwellenwert-Modell mit einem latenten normalverteilten Fehlerterm interpretiert werden kann.[4] Dagegen wird in biometrischen Anwendungen überwiegend die Logit-Variante das Modells verwendet, da die Logits Logarithmen der Odds (bzw. der kumulativen Odds im Fall des ordinalen Modells) sind, da Odds und Chancenverhältnisse im Bereich der Biometrie eine wichtige Rolle spielen.[3]

Probitanalyse in der Biometrie

Bearbeiten

In der Biometrie heißt ein Teilgebiet der Untersuchung von Dosis-Wirkung-Beziehungen Probitanalyse[5][6]. Dort findet sich folgende abweichende Terminologie für den Begriff Probit-Transformation. Für eine Zufallsvariable  , deren dekadischer Logarithmus   einer Normalverteilung mit den Parametern   und   genügt, ist die Zufallsvariable   standardnormalverteilt und die Zufallsvariable   nimmt mit sehr großer Wahrscheinlichkeit positive Werte an. Die Transformation der Messwerte

 

heißt in diesem Zusammenhang Probit-Transformation. In diesem Zusammenhang wird der zu einer Wahrscheinlichkeit   gehörende Probit als der Wert   definiert.[7]

Einzelnachweise

Bearbeiten
  1. Gerhard Tutz: Die Analyse kategorialer Daten – Anwendungsorientierte Einführung in Logit-Modellierung und kategoriale Regression. Oldenbourg, München / Wien 2000, ISBN 3-486-25405-7, 4.2.1 Probit-Modell, S. 122.
  2. Gerhard Tutz: Regression for Categorical Data. Cambridge University Press, Cambridge 2012, ISBN 978-1-107-00965-3, Probit Model, S. 123–124.
  3. a b Gerhard Tutz: Regression for Categorical Data. Cambridge University Press, Cambridge 2012, ISBN 978-1-107-00965-3, Probit Model, S. 248.
  4. Gerhard Tutz: Modelle für kategoriale Daten mit ordinalem Skalenniveau – Parametrische und nonparametrische Ansätze. Vandenhoeck & Ruprecht, Göttingen 1990, ISBN 3-525-11268-8, S. 76–77.
  5. P. H. Müller (Hrsg.): Lexikon der Stochastik – Wahrscheinlichkeitsrechnung und mathematische Statistik. 5. Auflage. Akademie-Verlag, Berlin 1991, ISBN 978-3-05-500608-1, Probitanalyse, S. 307–309.
  6. D. J. Finney: Probit Analysis. 3. Auflage. Cambridge University Press, Cambridge 1971.
  7. P. H. Müller (Hrsg.): Lexikon der Stochastik – Wahrscheinlichkeitsrechnung und mathematische Statistik. 5. Auflage. Akademie-Verlag, Berlin 1991, ISBN 978-3-05-500608-1, Probitanalyse, S. 308.