In der Mathematik ist die Puppe-Folge eine Konstruktion der Homotopietheorie.

Sie wurde 1958 von Dieter Puppe eingeführt[1][2] und ist auch unter der Bezeichnung Puppe-Sequenz geläufig.[3]

Definition

Bearbeiten

Es sei   eine stetige Abbildung. Es sei   der Abbildungskegel von  , dann ist

 

eine Kofaserung und

 

ist die Einhängung von  . Durch Iterieren erhält man die sogenannte Puppe-Folge

 

Anwendung

Bearbeiten

Für eine stetige Abbildung   und für jeden Raum   bilden die Homotopieklassen stetiger Abbildungen eine exakte Folge

 

Einzelnachweise

Bearbeiten
  1. Dieter Puppe: Homotopiemengen und ihre induzierten Abbildungen, Teil I, Mathematische Zeitschrift, Band 69, 1958, S. 299–344
  2. James C. Becker, Daniel Gottlieb: A history of duality in algebraic topology, pdf
  3. Tammo tom Dieck: Topologie, 2. völlig neu bearb. und erw. Auflage, de Gruyter (2000), S. 202ff, ISBN 3-11-016236-9