Quantendilogarithmus

Funktion der mathematischen Physik
(Weitergeleitet von Quanten-Dilogarithmus)

Der Quantendilogarithmus ist eine Funktion der mathematischen Physik. Er ist neben dem q-Exponential eine von zwei möglichen „Quantisierungen“ des klassischen Dilogarithmus, die beide durch Differenzenrelationen charakterisiert sind und im semiklassischen Limit den Dilogarithmus geben. Er wurde 1899 von Barnes eingeführt[1] und in der zweiten Hälfte des 20. Jahrhunderts unter anderem in Arbeiten von Shintani, Baxter, Faddeev und Kashaev verwendet.

Die klassische Dilogarithmus-Funktion kommt in der konformen Feldtheorie und in Arbeiten über exakt lösbare Modelle vor. Insbesondere können die effektiven zentralen Ladungen gewisser konformen Feldtheorien als endliche Summen von Dilogarithmen ausgedrückt werden. Quantendilogarithmen werden dagegen bei der Untersuchung integrabler Quantenfeldtheorien auf Gittern verwendet.

Definition

Bearbeiten

Es sei  . Der Quantendilogarithmus

 

ist definiert durch

 ,

wobei   eine entlang der reellen Achse von   nach   verlaufende und den Nullpunkt von oben umlaufende Kurve ist, zum Beispiel  .

(Für jede Kurve mit diesen Eigenschaften ergibt Integration dieses Integranden über die Kurve denselben Wert.)

Eigenschaften

Bearbeiten
  (Hier bezeichnet   den Quantenlogarithmus.)
 
  (Hier bezeichnet   den klassischen Dilogarithmus.)
 
 , insbesondere  
 
 
 
 
 
 

Die 1-Form   ist meromorph, sie hat einfache Polstellen in den Punkten   mit   und Nullstellen in den Punkten   mit  .

Literatur

Bearbeiten
  • L. Faddeev, R. Kashaev: Quantum dilogarithm. Mod. Phys. Lett. A 9, No. 5, 427–434 (1994).
  • V. V. Fock, A. B. Goncharov: The quantum dilogarithm and representations of quantum cluster varieties. Invent. Math. 175 (2009), no. 2, 223–286. (Kapitel 4.2)
Bearbeiten

Einzelnachweise

Bearbeiten
  1. E. W. Barnes: The genesis of the double gamma function. Proc. London Math. Soc. 31, 358–381 (1899)