Die Radiodrome („Leitstrahlkurve“, v. lat. radius „Strahl“ und griech. dromos „Lauf, Rennen“), oder Hundekurve ist eine spezielle ebene Verfolgungskurve. Sie beschreibt die Bewegung eines Punktes, der einen anderen Punkt verfolgt. Beide Punkte bewegen sich dabei mit konstanter, aber nicht notwendigerweise gleicher Geschwindigkeit.

Konstruktionsprinzip der geraden Radiodrome, x und y positiv

Die „gerade Radiodrome“ beschreibt den einfachen Fall, in dem der Verfolgte sich auf einer Gerade bewegt. Pierre Bouguer beschrieb sie 1732 erstmals. Sie ist eine der Kurven, die mit dem Trivialnamen „Hundekurve“ bezeichnet werden, da sie von einem Hund beschrieben wird, der einen auf einer geraden Linie fliehenden Hasen verfolgt (soweit sich der Standort des Hundes nicht auf dieser Linie befindet). Pierre-Louis Moreau de Maupertuis erweiterte die Problematik bald darauf auf beliebige Leitkurven. Dies führte zur Definition der „allgemeinen Radiodrome“.

Die Kurve tritt typischerweise in Tracking-Problemen in der Robotik und dynamischen Simulationen auf (Verfolgungsprobleme).

Allgemeine Gleichung

Bearbeiten

Sei   die Bewegung des verfolgten Punktes und   die Verfolgerkurve. Dann hat man die Gleichung

 

für alle Zeitpunkte  , wobei   das Skalarprodukt bedeutet. Diese Gleichung ergibt sich aus der Gleichung

 ,

welche beschreibt, dass die Tangente in   parallel zur Geraden durch   und   ist (das Skalarprodukt sich also als Produkt der Längen der Vektoren ergibt) und der Bedingung  .[1]

Spezielle Radiodrome

Bearbeiten

Gerade Radiodrome

Bearbeiten
Bildungsgesetz
Sei   der Startpunkt eines „Verfolgten“, und   der Startpunkt eines „Verfolgers“.
Wandert der Punkt   mit der Geschwindigkeit   auf einer Geraden, und bewegt sich der Punkt   mit der Geschwindigkeit   immer in Richtung des Punktes  , dann durchläuft   eine Radiodrome.
Funktionsgleichung in kartesischen Koordinaten
Sei weiters das Geschwindigkeitsverhältnis  .
  im Ursprung,   auf der x-Achse, A bewege sich entlang der y-Achse. Dann bewegt sich   auf der Kurve
 
 
Den zweiten Fall nennt man eigentliche Radiodrome. Sie stellt den einfachsten Spezialfall dar.

Herleitung

Bearbeiten
  1. Für die Bewegung eines Punktes   mit der Geschwindigkeit   auf einem Funktionsgraphen gilt grundsätzlich:   Da hier die Bewegung nach links verlaufen soll,   also abnimmt, ist   negativ. Soll w durch einen positiven Wert dargestellt werden, so verwendet man hier   konstant.
  2. Ebenfalls grundsätzlich gilt:   sowie  .
  3. Nun fährt   mit der konstanten Geschwindigkeit   auf der  -Achse nach oben, hat also zum Zeitpunkt   den Wert  . Dann zeigt die Tangente an den gesuchten Graphen von P auf A, und man erhält die Tangentenbedingung  . Das ergibt die Differentialgleichung:   .
  4. Differentiation nach   liefert  . Mit dem unter 2. Gesagten ergibt sich daraus  , was sich zu   vereinfacht.
  5. Ersetzt man nun   nach 1., erhält man  
  6. Die Lösung gelingt mit Integration durch die Substitution   somit  . Daraus folgt   und durch Trennung der Variablen zu   mit  .
  7. Integrieren liefert   (siehe arsinh), sowie Rücksubstitution und Anwenden der Definitionsformel des sinh x, mit C1 = eC, zu:  
  8. Hierauf erneutes Integrieren, unter Berücksichtigung von C2 liefert:  
  9. Einsetzen der Startwerte von   bzw.   liefern die Werte für C1 und C2.

E. W. Weisstein gibt in [2] eine geschlossene Parameterdarstellung.

Bemerkungen
  •  , da  
  • Ist  , also  , so holt der Verfolger   den Verfolgten   ein, der Graph hat also dort einen Schnittpunkt mit der  -Achse. Ist  , also  , so wird   nicht eingeholt, der Graph nähert sich also asymptotisch der  -Achse.
  • Ist die Startrichtung nicht normal auf der Leitgeraden, so erhält man andere Randbedingungen. Der Tiefpunkt errechnet sich aus  .
  • Für eine allgemeine Lage der Leitgerade ist eine geeignete Koordinatentransformation vorzunehmen.
Beispiel
 
Beispiel Radiodrome

  werde von   mit doppelter Geschwindigkeit verfolgt, also  . Legt man ein Koordinatensystem mit   im Ursprung und  -Achse in Bewegungsrichtung von   an, senkrecht dazu durch   also die  -Achse, so möge sich   gerade in   befinden.   bewegt sich nun auf den Ursprung zu, die Tangente der Radiodrome hat also bei   die Steigung  . Dies eingesetzt in die Gleichung aus 7. liefert mit  :  , was auf die quadratische Gleichung   mit den Lösungen   bzw.   führt, wobei nur die positive Lösung verwendbar ist (s. 1. Bemerkung). In die Gleichung für   aus 8. eingesetzt erhält man:   Einsetzen von P(9|3,75) liefert C2=5,25. Damit ergibt sich   mit   Bei   und damit   hat der Graph einen Tiefpunkt, bei   und damit   holt Verfolger   den Verfolgten   ein. Auch die Länge des von   zurückgelegten Weges lässt sich leicht berechnen:   mit der Stammfunktion  . Der von   von   bis zum Tiefpunkt bei   zurückgelegte Weg beträgt dann  . Die dort waagerechte Tangente zeigt auf   und hat die Höhe   (s. o.),   hat also den Weg   zurückgelegt, genau die Hälfte von  , da   halb so schnell ist wie  . Von   bis   legt   den Weg   zurück,   die Hälfte, also  , weshalb   bei   von   getroffen wird.

Eigenschaften

Bearbeiten
  • Die Verbindungslinie von entsprechenden   und   ist Tangente an die Radiodrome.
  • Offensichtlich ist   nicht negativ für alle  , falls der Startpunkt oberhalb der  -Achse liegt.

Analyse des Geschwindigkeitsparameters  

 :

  • Bei   ist   schneller als  , Die Kurve nähert sich asymptotisch der  -Achse: Der Verfolger ist langsamer und erreicht den Verfolgten nicht, noch kreuzt er seine Bahn.
  • Bei gleicher Geschwindigkeit ( ) läuft der Verfolger in zunehmend gleichem Abstand hinter dem Verfolgten her: Die Kurve zeigt das Grenzwert-Verhalten einer „Traktrix“.

 :

  • Es gibt genau einen Endpunkt des Graphen am linken Rand   der Definitionsmenge. Der Verfolger ist schneller als der Verfolgte und erreicht jenen in endlicher Zeit. Wir nennen diesen Punkt „Treffpunkt“ oder „Fangpunkt“, die Kurve ist im Fangpunkt tatsächlich zu Ende.

Der Fall   ist trivial, nämlich eine Gerade. Der Verfolger ist „unendlich“ schnell, oder der Verfolgte steht still.

Für rationales   degeneriert die Funktion zu einer algebraischen Kurve – sind beispielsweise  , so ist diese Kurve vom Grad  .

Kreis-Radiodrome

Bearbeiten
 
Kreis-Radiodrome (rot), bei der der Verfolger den Verfolgten nach einem Umlauf einholt.

Bewegt sich der „Verfolgte“ auf einer Kreislinie und startet der „Verfolger“ im Mittelpunkt, so ergibt sich eine weitere Version.

Haben Verfolgter und Verfolger die gleiche Geschwindigkeit, so wird der Verfolgte „nach unendlicher Zeit“ eingeholt, d. h. der Abstand zwischen Verfolger und Verfolgtem konvergiert gegen 0.

Falls die Verfolgerkurve eine höhere Geschwindigkeit als die verfolgte Kurve hat, wird sie diese in endlicher Zeit einholen.

Falls die Verfolgerkurve geringere Geschwindigkeit als die verfolgte Kurve hat, wird sie sich einem Kreis mit kleinerem Durchmesser annähern.[3]

Beispiel

Bearbeiten
 
Radiodrome (rote Kurve)

Zwei Verfolger (rot und blau in der Grafik) kämpfen nach einer Passabgabe um einen Ball (gelb). Beide sind gleich schnell und schneller als der Ball. Während Blau den Zielpunkt abschätzt und sich auf einer Geraden bewegt, läuft Rot auf einer Radiodrome (Hundekurve) dem Ball hinterher und ist wegen des längeren Wegs langsamer.

Siehe auch

Bearbeiten
Bearbeiten
Commons: Curve of pursuit – Album mit Bildern, Videos und Audiodateien

Einzelnachweise

Bearbeiten
  1. Die Verfolgerkurve soll konstante Geschwindigkeit haben und nach geeigneter Wahl der Einheiten kann man dann   annehmen.
  2. MathWorld, op. cit.
  3. Michael Lloyd: Pursuit Curves, Academic Forum 24, 2006-07