Riesz-Mittel

Begriff aus der Mathematik

Das Riesz-Mittel ist eine bestimmte Mittelwert-Bildung für Werte in eine Reihe in der Mathematik. Sie wurden von Marcel Riesz 1911 als Verbesserung zum Cesàro-Mittel eingeführt.[1][2] Das Riesz-Mittel sollte nicht mit dem Bochner-Riesz-Mittel oder dem Strong-Riesz-Mittel verwechselt werden.

Definition

Bearbeiten

Gegeben sei eine Reihe  . Das Riesz-Mittel der Reihe ist definiert durch

 

Manchmal wird ein verallgemeinertes Riesz-Mittel definiert als

 

Dabei sind die   eine Folge mit   und mit  , wenn  . Die anderen   sind beliebig.

Das Riesz-Mittel wird oft verwendet, um die Summierbarkeit von Folgen zu untersuchen. Üblicherweise untersuchen Sätze zur Summierbarkeit der   für Folgen  . Normalerweise ist eine Folge summierbar, wenn der Grenzwert   vorhanden ist oder der Grenzwert   existiert, obgleich die exakten Sätze zur Summierbarkeit oft noch zusätzliche Bedingungen voraussetzen.

Spezialfälle

Bearbeiten

Sei   für alle  . Dann gilt

 

Dabei muss   sein,   ist die Gammafunktion und   ist die Riemannsche Zeta-Funktion. Es kann gezeigt werden, dass die Potenzreihe

 

für   konvergent ist. Es ist anzumerken, dass das Integral von der Form einer inversen Mellin-Transformation ist.

Ein anderer interessanter Fall, der mit der Zahlentheorie verknüpft ist, entsteht durch Setzen von  , wobei   die Mangoldt-Funktion ist. Dann ist

 

Erneut muss c > 1 sein. Die Summe über ρ ist die Summe über die Nullen der Riemannschen Zeta-Funktion und

 

ist konvergent für ρ > 1.

Die Integrale, die hierbei auftreten ähneln dem Nörlund-Rice-Integral. Sie hängen über Perron's-Formel zusammen.

Siehe auch

Bearbeiten

Literatur

Bearbeiten
  1. M. Riesz: Comptes Rendus, 12. Juni 1911 (englisch)
  2. G.H. Hardy and J.E. Littlewood: Contributions to the Theory of the Riemann Zeta-Function and the Theory of the Distribution of Primes, Acta Mathematica, 41 (1916) pp.119–196. (englisch)