Robuste Optimierung

Art der Optimierung

Robuste Optimierung ist ein Gebiet der Optimierung in der Mathematik. Dabei geht es um Optimierungsprobleme, in denen nach Stabilität gegenüber Unsicherheit und/oder Variabilität in den Werten der Problemparameter gestrebt wird.

Geschichte

Bearbeiten

Die Ursprünge der Robusten Optimierung gehen zurück auf die Begründung der modernen Entscheidungstheorie in den 1950er Jahren. Dabei wurden Worst-Case-Analysen entwickelt, um mit hohen Unsicherheiten umgehen zu können. Robuste Optimierung wurde in den 70er Jahren zu einem eigenen Forschungsgebiet mit verschiedenen Entwicklungen in Gebieten wie Operations Research, Kontrolltheorie, Statistik, Wirtschaftswissenschaft u. a.

Beispiel

Bearbeiten

Gegeben sei das einfache lineare Optimierungsproblem

 

mit   als Untermenge von  .

Die Bedingung   in den Nebenbedingungen macht dieses Problem zu einem 'robusten' Problem. Sie bedeutet, dass für jedes Paar   die Nebenbedingungen   für den 'schlimmsten' Fall von   gelten muss, also auch für das Paar  , das den Wert von   für gegebene   maximiert.

Für den Fall, dass der Parameterraum   endlich ist und damit nur aus endlich vielen Elementen besteht, ist dieses Robuste Optimierungsproblem selber ein lineares Optimierungsproblem: Für jedes Paar   gibt es eine lineare Nebenbedingung  .

Für den Fall, dass   nicht eine endliche Menge ist, ist dieses Problem ein lineares, semi-infinites Optimierungsproblem, also ein lineares Optimierungsproblem mit endlich vielen (zwei) Entscheidungsvariablen und unendlich vielen Nebenbedingungen.

Klassifizierung

Bearbeiten

Es gibt eine Reihe von Klassifizierungskriterien für Probleme bzw. Modelle der Robusten Optimierung. So ist z. B. eine Unterscheidung zwischen Problemen mit lokalen oder globalen Robustheitsmodellen möglich, oder auch zwischen stochastischen und nichtstochastischen Robustheitsmodellen. Moderne Verfahren der Robusten Optimierung sind vor allem auf nichtstochastischen Robustheitsmodellen aufgebaut, die sich am schlimmsten (Worst-Case-)Fall orientieren.

Lokale Robustheit

Bearbeiten

Modelle mit lokaler Robustheit versuchen, den nominalen Wert eines Parameters gegen kleine Störeinflüsse zu schützen. Ein Modell dafür ist das Modell des Stabilitätsradius:

 

mit   als dem nominalen Wert des Parameters,   als eine Kugel mit Radius  , die zentriert ist im Punkt  , und   als die Menge an Werten von  , die die für die Entscheidung   gegebenen Stabilitäts- bzw. Effizienzeigenschaften erfüllen.

Die Robustheit (bzw. der Stabilitätsradius) der Entscheidung   ist damit der Radius der größten Kugel, die zentriert ist im Punkt  , von der alle Elemente die Stabilitätskriterien von   erfüllen.

Globale Robustheit

Bearbeiten

Gegeben sei das robuste Optimierungsproblem

 

wobei   die Menge aller möglichen Werte von   bezeichnet, die in Frage kommen.

Dies ist ein globales robustes Optimierungsproblem dahingehend, dass die robuste Nebenbedingung   alle möglichen Werte von   betrachtet.

Die Schwierigkeit bei solch einer globalen Nebenbedingung besteht darin, dass eine Situation auftreten kann, in der es kein   gibt, dass diese Nebenbedingung erfüllt. Selbst wenn solch ein   existiert, kann die Nebenbedingung selber zu konservativ sein. Sie kann dazu führen, dass die Lösung   nur zu einem kleinen Zielfunktionswert   führt, der jedoch nicht repräsentativ für andere Lösungen   steht. Es könnte zum Beispiel ein   geben, das die robuste Nebenbedingung nur ganz leicht verletzt, aber einen viel größeren Zielfunktionswert   erreicht. In diesen Fällen kann es notwendig sein, die robuste Nebenbedingung etwas aufzuweichen und/oder die Formulierung des Problems zu ändern.

Beispiel

Bearbeiten

Angenommen, das Ziel ist es, die Nebenbedingung   zu erfüllen, wobei   die Entscheidungsvariable bezeichnet und   einen Parameter mit den möglichen Werten  . Gibt es kein  , so dass  , dann ist folgendes Maß für Robustheit plausibel:

 

wobei   ein angemessenes Maß für die "Größe" der Menge   darstellen soll. Ist beispielsweise   eine endliche Menge, dann kann   als die Kardinalität der Menge   betrachtet werden.

Die Robustheit der Entscheidung ist damit die Größe der größten Untermenge von  , für die die Nebenbedingung   für jedes   in dieser Menge erfüllt ist. Die optimale Entscheidung ist damit diejenige mit dem größten Robustheitswert.

Dadurch entsteht das folgende robuste Optimierungsproblem:

 

Die beschriebene Bedeutung von Globaler Robustheit wird in der Praxis nicht oft verwendet, da die dadurch entstehenden robusten Optimierungsprobleme normalerweise (jedoch nicht immer) sehr schwer zu lösen sind.

Literatur

Bearbeiten
  • Armin Scholl: Robuste Planung und Optimierung. Grundlagen, Konzepte und Methoden, experimentelle Untersuchungen. Physica-Verlag, Heidelberg 2001, ISBN 3-7908-1408-3 (zugl. Dissertation, TU Darmstadt).