Satz von Mertens (Resultantensystem)

mathematischer Satz

Der Satz von Mertens ist ein Satz über homogene Polynome, der unter anderem in der algebraischen Geometrie für projektiv algebraische Mengen relevant ist.

Formulierung

Bearbeiten

Seien K ein algebraisch abgeschlossener Körper und   homogene Polynome der Grade  :

 

Dann gibt es ein Resultantensystem, das heißt Polynome   in den Unbestimmten  , sodass die Polynome   eine gemeinsame Nullstelle außer 0 haben (also eine im projektiven Raum), genau dann wenn für alle k  

  haben keine gemeinsame Nullstelle außer 0 genau dann, wenn ihre gemeinsame Nullstellenmenge in der Nullstellenmenge von   enthalten ist, die ja nur die 0 ist. Wie man sich mit Hilfe des Hilbertschen Nullstellensatzes leicht überlegen kann, ist dies genau dann der Fall, wenn es eine natürliche Zahl d gibt, sodass   für alle Multiindizes mit Betrag d. Also sind alle Monome des Grades d in diesem Ideal enthalten, lassen sich also darstellen als Summe dieser mit anderen ohne Einschränkung homogenen Polynomen als Koeffizienten. Unter den  , wobei   muss es also soviel linear unabhängige geben wie Monome des Grades d. Also gilt: Sie haben keine gemeinsame Nullstelle außer der 0 genau dann, wenn für alle natürlichen Zahlen d je   (Anzahl Monome des Grades d) der   linear unabhängig sind. Dies ist äquivalent zum Verschwinden von   -Unterdeterminanten gebildet aus 0 und  . Dies sind Polynome in den   und wegen Noetherzität von   (Hilbertscher Basissatz) reichen endlich viele.

Literatur

Bearbeiten