Satz von Osgood (Funktionentheorie)
Der Satz von Osgood (nach William Osgood) ist eine Aussage der Funktionentheorie und besagt, dass jede injektive holomorphe Funktion eine biholomorphe Abbildung auf ihr Bild ist.
Satz
BearbeitenSei offen und eine injektive holomorphe Funktion. Dann ist offen und die Umkehrabbildung ist holomorph, also die Abbildung biholomorph.
Da Holomorphie eine lokale Eigenschaft ist, gilt der Satz auch für Abbildungen zwischen komplexen Mannigfaltigkeiten.
Unterschied zum reellen Fall
BearbeitenFür reell-analytische Funktionen gilt die Aussage des Satzes nicht. Beispielsweise ist mit bijektiv und analytisch, aber die Umkehrfunktion ist im Nullpunkt nicht mehr analytisch.
Literatur
Bearbeiten- Raghavan Narasimhan: Several Complex Variables., University of Chicago Press, Chicago 1971, ISBN 0-226-56817-2