Der Schiffler-Punkt ist einer der besonderen Punkte eines Dreiecks und hat die Kimberling-Nummer X(21). Ist I der Mittelpunkt des Inkreises, so schneiden sich die eulerschen Geraden der Dreiecke ABC, BCI, CAI und ABI in einem Punkt. Dieser Schnittpunkt wurde 1985 von dem Spielwarenfabrikanten und Amateurgeometer Kurt Schiffler in der kanadischen Mathematikzeitschrift Crux Mathematicorum eingeführt und wird heute als Schiffler-Punkt bezeichnet und die Aussage, dass sich alle vier Eulergeraden in jenem Punkt schneiden, als Satz von Schiffler.[1][2]

Schiffler-Punkt S als Schnittpunkt der Eulergeraden e0, e1, e2 und e3

Koordinaten

Bearbeiten
Schiffler-Punkt ( )
Trilineare Koordinaten  

 

Baryzentrische Koordinaten  

 

Bearbeiten

Einzelnachweise

Bearbeiten
  1. Joe Goggins: The Converse of Schiffler’s theorem. In: Crux Mathematicorum, with Mathematical Mayhem, Canadian Mathematical Society, 2007, Band 33, Nr. 6, S. 354, cms.math.ca (PDF)
  2. Kurt Schiffler: Problem 1018. In: Crux Mathematicorum, Band 11, Nr. 2, Februar 1985, S. 51, cms.math.ca (PDF). G. R. Veldkamp, W. A. van der Spek: Solutions to Problem 1018. In: Crux Mathematicorum, Band 12, Nr. 6, Juni 1986, S. 151, cms.math.ca (PDF)