Stichprobenfunktion
In der Statistik fasst eine Stichprobenfunktion, auch Stichprobenstatistik oder schlicht Statistik, Informationen aus einer Stichprobe in spezifischer Form als Funktion zusammen. Beispiele für Stichprobenfunktionen sind Schätzfunktionen, Prüfgrößen (Teststatistik, Testgröße, Testfunktion) oder die Grenze eines Konfidenzintervalls. Bekannte Stichprobenfunktionen sind das Stichprobenmittel, die Stichprobenvarianz sowie der Stichprobenmedian. Die Wahrscheinlichkeitsverteilung einer Stichprobenfunktion heißt auch Stichprobenverteilung.
Definition
BearbeitenDie Zufallsvariablen seien eine Stichprobe des Umfangs , weiterhin sei
eine messbare Funktion. Dann heißt die Zufallsvariable
eine Stichprobenfunktion.
Die Messbarkeit der Funktion garantiert, dass eine Zufallsvariable ist.
Beispiele
BearbeitenIn der Statistik und Wahrscheinlichkeitstheorie häufig verwendete Stichprobenfunktionen sind die Summenvariable , die in diesem Zusammenhang auch Stichprobensumme[1] heißt, das Stichprobenmittel , , und .
Literatur
Bearbeiten- Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler. 7. Auflage. 3: Vektoranalysis, Wahrscheinlichkeitsrechnung, Mathematische Statistik, Fehler- und Ausgleichsrechnung. Springer Vieweg, Wiesbaden 2016, ISBN 978-3-658-11924-9.
Einzelnachweise
Bearbeiten- ↑ Horst Rinne: Taschenbuch der Statistik. 4. Auflage. Harri Deutsch, Frankfurt am Main 2008, ISBN 978-3-8171-1827-4, S. 437.