Subbasis
Eine Subbasis ist in der mathematischen Grundlagendisziplin der mengentheoretischen Topologie ein spezielles Mengensystem von offenen Mengen. Eine Subbasis bestimmt eine Topologie eindeutig und vereinfacht damit oftmals Beweise, da es ausreichend ist, sich auf die Mengen der Subbasis zu beschränken. Ebenso werden manche Eigenschaften von Topologien auch als Eigenschaften ihrer Subbasen definiert.
Umgekehrt lässt sich jedes Mengensystem als Subbasis auffassen und ermöglicht es so, gezielt Topologien mit bestimmten Eigenschaften zu konstruieren.
In der aus dem Russischen ins Englische übersetzten Literatur findet sich auch die Bezeichnung "Pre-Base" (deutsch: Prä-Basis) anstelle der typischen englischen Bezeichnungen subbase oder subbasis.[1]
Definition
BearbeitenEs gelten die Konventionen
- und .
Gegeben sei ein topologischer Raum sowie ein Mengensystem . Dann heißt eine Subbasis der Topologie , wenn eine der folgenden äquivalenten Bedingungen erfüllt ist:
- Jede offene Menge ist die Vereinigung von beliebig vielen Mengen, die selbst Schnitte von endlich vielen Mengen aus sind.
- Die Menge aller Schnitte von endlich vielen Mengen aus , also
- bildet eine Basis der Topologie .
- erzeugt in dem Sinne, dass
- die (bezüglich Teilmengenbeziehung) kleinste Topologie ist, die enthält, und
- jede weitere Topologie, die enthält, immer feiner ist als .
Beispiele
BearbeitenIst eine unendliche Menge, so bildet die Menge aller endlichen Teilmengen einer vorgegebenen, endlichen Mächtigkeit , also
eine Subbasis der diskreten Topologie, die durch gegeben ist. Denn es gilt nach Auswahl geeigneter aus , dass für ein vorgegebenes . Somit lassen sich aus alle einelementigen Teilmengen von erzeugen. Diese bilden dann eine Basis der diskreten Topologie.
Eine Subbasis der natürlichen Topologie auf den reellen Zahlen ist gegeben durch
- ,
wobei
- und
ist. Denn die Menge der offenen Intervalle bildet eine Basis der natürlichen Topologie, und jedes offene Intervall lässt sich aus der Subbasis durch
erzeugen.
Eigenschaften
BearbeitenNicht-Eindeutigkeit
BearbeitenSubbasen bestimmen zwar die Topologie eindeutig, im Allgemeinen besitzt eine Topologie aber mehr als eine Subbasis. So bilden sowohl
- als auch
eine Subbasis von . Ebenso besitzt die natürliche Topologie auf nicht bloß die oben als Beispiel angegebene Subbasis. Es genügt beispielsweise auch, Intervalle der Form und für rationale Intervallgrenzen, also für zu betrachten.
Erzeugung von Topologien durch Subbasen
BearbeitenSo wie eine Topologie ihre Subbasen bestimmt, kann man ebenso durch eine Subbasis eine Topologie bestimmen. Dazu wählt man ein beliebiges Mengensystem und erklärt dies zur Subbasis einer vorerst nicht näher präzisierten Topologie. Zu beachten ist hier, dass dies im Gegensatz zum analogen Verfahren mit Basen ohne jegliche Voraussetzung an das Mengensystem möglich ist.
Formell wird dieses Verfahren, das sich in der dritten der oben gegebenen Definitionen widerspiegelt, durch den Hüllenoperator
- .
Dieser Hüllenoperator liefert wieder eine Topologie, da der Schnitt von Topologien wieder eine Topologie ist. Des Weiteren ist diese Topologie die gröbste Topologie, die das vorgegebene Mengensystem enthält.
Wichtige Aussagen mittels Subbasen
Bearbeiten- Die Initialtopologie einer Familie von Abbildungen von in die topologischen Räume ist genau die Topologie auf , deren Subbasis aus den Urbildern offener Mengen, also aus für , besteht. Da sowohl die Teilraumtopologie als auch die Produkttopologie Spezialfälle der Initialtopologie sind, lassen sich diese Topologien ebenso über ihre Subbasen definieren.
- Satz von Alexander: Es genügt, Kompaktheit für Mengen aus einer Subbasis zu überprüfen.
- Ebenfalls genügt es, Stetigkeit auf einer Subbasis zu überprüfen. Ist also eine Abbildung von nach und eine beliebige Subbasis von , so ist genau dann stetig, wenn ist.
Siehe auch
BearbeitenWeblinks
BearbeitenLiteratur
Bearbeiten- Steven Roman: Lattices and Ordered Sets. Springer, 2008, ISBN 978-0-387-78900-2, doi:10.1007/978-0-387-78901-9.
- Boto von Querenburg: Mengentheoretische Topologie. 3. Auflage. Springer-Verlag, Berlin Heidelberg New York 2001, ISBN 978-3-540-67790-1, doi:10.1007/978-3-642-56860-2.
Einzelnachweise
Bearbeiten- ↑ M.I. Voitsekhovskii: Pre-Base. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 1-55608-010-7 (englisch, encyclopediaofmath.org).