Eine taktische Zerlegung[1] (engl.: tactical decomposition[2][3]) ist in der endlichen Geometrie eine Partitionierung der Punkt- und der Blockmenge eines 2-Blockplanes in Punkt- und Blockklassen derart, dass jedes aus einer dieser Punktklassen und einer dieser Blockklassen bestehende Paar mit der induzierten Inzidenz eine taktische Konfiguration bildet. Eine solche Zerlegung kann als Verallgemeinerung der Auflösung eines Blockplanes angesehen werden: Anders als im Falle einer Auflösung, bei der man nur die Blockmenge in (verallgemeinerte „Parallelen“-)Scharen partitioniert, so dass auch hier die ursprüngliche Punktmenge mit jeder der Blockklassen (Scharen) eine taktische Konfiguration bildet, teilt man bei einer taktischen Zerlegung im Allgemeinen zusätzlich noch die Punktmenge in mehrere Punktklassen auf.

Definitionen

Bearbeiten

Taktische Zerlegung

Bearbeiten

Sei   ein  -Blockplan, sei weiter   eine Partition der Punktmenge   und   eine Partition der Blockmenge  . Man nennt   eine taktische Zerlegung von  , falls jede der Inzidenzstrukturen

 

mit der jeweiligen induzierten Inzidenz   eine taktische Konfiguration ist. Das heißt dann im Einzelnen:

Es gibt nichtnegative ganze Zahlen   mit den Eigenschaften:
  1. Durch jeden Punkt von   gehen genau   Blöcke aus   und
  2. auf jedem Block von   liegen genau   Punkte aus  .

Parameter einer taktischen Zerlegung

Bearbeiten
  • Für eine taktische Zerlegung werden die folgenden Bezeichnungen vereinbart:
 ,

die Mengen   heißen Punktklassen, die Mengen   heißen Blockklassen der Zerlegung. Die Zahlen   heißen die Parameter der taktischen Zerlegung.

Beziehungen zwischen den Parametern der Zerlegung

Bearbeiten

Sei   eine taktische Zerlegung mit den Parametern   des  -Blockplanes  . Dann gilt:[4]

  1. Für jedes   ist  
  2. Für alle   mit   ist  

Darüber hinaus gilt dann:[5]

 

Der folgende Satz von Block und Kantor[6][7] besagt, dass bei jeder taktischen Zerlegung die Anzahl der Punktklassen höchstens so groß sein kann wie die Anzahl der Blockklassen und dass bei symmetrischen 2-Blockplänen eine Zerlegung nur bei Gleichheit dieser Klassenzahlen möglich ist:[8]

Sei   eine taktische Zerlegung des  -Blockplanes  . Dann gilt:
  1.   und
  2. Ist   symmetrisch, so ist  

Der Beweis der zweiten Aussage aus der ersten ergibt sich einfach daraus, dass gilt:

Ist   ein symmetrischer 2-Blockplan und   eine taktische Zerlegung, dann ist   eine taktische Zerlegung des dualen Blockplanes  ![9]

Beispiele

Bearbeiten

Triviale Zerlegungen

Bearbeiten

Jeder  -Blockplan   lässt die folgenden beiden trivialen taktischen Zerlegungen zu:

  1.  ; hier sind beide Partitionierungen trivial.
  2.  , wobei jede Punktklasse genau einen Punkt und jede Blockklasse genau einen Block enthält, die „Klassen“ seien jeweils wie ihr einziges Element nummeriert. Bei dieser Partitionierung und mit dieser Nummerierung gilt
 

Auflösungen als Zerlegungen

Bearbeiten

Jede Auflösung   eines Blockplanes entspricht der speziellen taktischen Zerlegung   mit den Parametern  

Bahnenzerlegungen

Bearbeiten

Ist G eine Automorphismengruppe des Blockplanes  , also eine Untergruppe G der vollen Automorphismengruppe  , sind weiter   die Punktbahnen sowie   die Blockbahnen der Operationen von G auf der Punkt- bzw. Blockmenge, dann ist   eine taktische Zerlegung von  .

Die Bahnenzerlegung ist wohl der wichtigste Fall einer Zerlegung. Sie spielt sowohl bei der Konstruktion neuer Blockpläne durch Gruppenerweiterung (von geeigneten Automorphismengruppen), als auch bei der Klassifikation von Blockplänen und deren (vollen) Automorphismengruppen eine wichtige Rolle. Damit sind taktische Zerlegungen auch für die Klassifikation endlicher einfacher Gruppen von gewisser Bedeutung: So sind zum Beispiel die sporadischen Mathieugruppen, volle Automorphismengruppen der Wittschen Blockpläne.

Auch die beiden obengenannten trivialen Zerlegungen lassen sich (gewöhnlich) als spezielle Bahnenzerlegungen auffassen:

  1. Die erste triviale Zerlegung   mit nur einer Punkt- und Blockklasse entsteht als spezielle Bahnenzerlegung und zwar durch die Operation der vollen Automorphismengruppe  , sofern diese mindestens einfach transitiv auf der Punktmenge und der Blockmenge operiert.
  2. Die zweite triviale Zerlegung mit   in lauter einelementige Klassen entsteht als spezielle Bahnenzerlegung und zwar durch die Operation der Einsgruppe  .

Literatur

Bearbeiten

Artikel zu Einzelfragen

  • Richard E. Block: On the orbits of collineation groups. In: Mathematische Zeitschrift. Band 96, 1967, S. 33–49 (web.archive.org [PDF; 905 kB; abgerufen am 5. August 2012]).
  • R. G. R. Harris: On automorphisms and resolutions of designs. Dissertation an der Universität London. 1975.
  • W. M. Kantor: Automorphism groups of designs. In: Mathematische Zeitschrift. Band 109, 1969, S. 246–252.
  • C. W. Norman: A characterization of the Mathieu group M11. In: Mathematische Zeitschrift. Band 106, 1968, S. 162–166.
  • H. Beker: On strong tactical decompositions. In: Journal of the London Mathematical Society. Band 16, 1977, S. 191–196.

Lehrbücher

Einzelnachweise

Bearbeiten
  1. Beutelspacher (1982)
  2. Beth, Jungnickel, Lenz (1986)
  3. Beker (1977)
  4. Beutelspacher (1982), Lemma 5.2.1
  5. Beutelspacher (1982), Satz 5.2.5
  6. Block (1964)
  7. Kantor (1969)
  8. Beutelspacher (1982) Satz 5.2.2
  9. Beutelspacher (1982), S. 213