Tetranatriumiminodisuccinat
Tetranatriumiminodisuccinat (auch: Iminodisuccinat-Tetranatriumsalz) ist ein Natriumsalz der Iminodibernsteinsäure, die auch als N-(1,2-Dicarboxyethyl)asparaginsäure bezeichnet wird. Die Salze werden Iminodisuccinate (IDS bzw. IDHA[1]) genannt.
Strukturformel | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Allgemeines | ||||||||||||||||
Name | Tetranatriumiminodisuccinat | |||||||||||||||
Andere Namen |
| |||||||||||||||
Summenformel | C8H7NNa4O8 | |||||||||||||||
Kurzbeschreibung |
weißer Feststoff[2] | |||||||||||||||
Externe Identifikatoren/Datenbanken | ||||||||||||||||
| ||||||||||||||||
Eigenschaften | ||||||||||||||||
Molare Masse | 337,10 g·mol−1 | |||||||||||||||
Aggregatzustand |
fest | |||||||||||||||
Dichte | ||||||||||||||||
pKS-Wert | ||||||||||||||||
Löslichkeit |
564 g·cm−3[4] bei 25 °C und pH 13,1 | |||||||||||||||
Sicherheitshinweise | ||||||||||||||||
| ||||||||||||||||
Toxikologische Daten | ||||||||||||||||
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa). |
Gewinnung und Darstellung
BearbeitenIminodibernsteinsäure kann durch Reaktion von Maleinsäureanhydrid mit Ammoniak und Natriumhydroxid dargestellt werden.[8]
Bei der Umsetzung von Maleinsäureanhydrid mit Natriumhydroxid in Wasser bei erhöhter Temperatur entsteht eine konzentrierte Dinatriummaleat-Lösung, zu der Ammoniak zudosiert wird.[9] Das Reaktionsgemisch wird auf Temperaturen von 90 bis 145 °C erhitzt, überschüssiges Wasser und Ammoniak abdestilliert und mit Ausbeuten bis 98 % d. Th. eine wässrige Lösung mit ca. 34 % IDS-Na4-Salz erhalten.[10] Durch Sprühtrocknung lässt sich daraus ein Feststoffgemisch gewinnen, bestehend im Mittel aus >65 % IDS-Na-Salzen (im Wesentlichen IDS-Na4-Salz), <2 % Maleinsäure-Na-Salze, <8 % Fumarsäure-Na-Salze, <2 % Äpfelsäure-Na-salze und <15 % Asparaginsäure-Na-Salze, sowie >15 % Wasser. Die Nebenprodukte der Reaktion beeinflussen weder die Komplexierungskapazität, noch die Bioabbaubarkeit des IDS.
Produkt | IDS-Na4-Salz | Na2-Fumarat | Na2-Aspartat | Na2-Malat | Na2-Maleat | Wasser |
---|---|---|---|---|---|---|
Industrieller Reiniger[4] | 72,1 | 5,6 | 10,6 | - | - | 8,9 |
Baypure CX 100/34 %[10] | > 33,0 | < 2,5 | < 7,0 | < 0,5 | < 0,3 | < 59,0 |
Baypure CX 100 solid[10] | > 65,0 | < 8,0 | < 15,0 | < 2,0 | < 2,0 | < 15,0 |
Baypure CX 100 solid G[10] | > 78,0 | < 5,0 | < 15,0 | < 0,7 | < 0,5 | < 4,0 |
Eigenschaften
BearbeitenDas nach Sprühtrocknung der wässrigen Lösung als weißes Pulver anfallende Feststoffgemisch ist neben einem Granulat mit >78 % IDS-Na4-Salzanteil handelsübliches Produkt (Baypure® CX 100). IDHA ist ein Chelat-Komplexbildner mittlerer Komplexstabilität (10−16), der als fünfzähniger Ligand Erdalkali- und mehrwertige Schwermetallionen mit einem Molekül Wasser in einer oktaedrischen Struktur einschließt.[11] In 0,25%iger wässriger Lösung stellt sich ein pH-Wert von 11,5 für das IDS-Na4-Salz ein. Das Salz ist in schwach saurer Lösung (pH>4–7) auch bei 100 °C mehrere Stunden und in stark alkalischer Lösung auch bei erhöhter Temperatur (50 °C) über Wochen stabil. Das IDS-Na4-Salz ist nach den OECD-Methoden OECD 302 B (100 % nach 28 Tagen) und OECD 301 E (78 % nach 28 Tagen) als leicht biologisch abbaubar klassifiziert.[10] Aus der Klasse der weitverbreiteten Chelatbildner sind lediglich die jedoch als krebserzeugend verdächtigte Nitrilotriessigsäure (NTA), sowie die chelatisierend wirksamen Aminosäurederivate β-Alanindiessigsäure und Methylglycindiessigsäure (Trilon M®) unter bestimmten Bedingungen hinreichend bioabbaubar.
Verwendung
BearbeitenIminodibernsteinsäure wird seit 1998 von Lanxess unter dem Handelsnamen Baypure CX 100 als Komplexierungsmittel angeboten.[8] Es reagiert mit den Calcium- und Magnesiumionen (Härtebildner) im Wasser und bildet Chelatkomplexe im mittleren Stabilitätsbereich[10]. Diese verhindern das Entstehen unlöslicher Salze (Ablagerungen) und Seifen (Kalkseifen) und verbessern so die Wirkung von Wasch- und Geschirrspülmitteln, Handseifen und Haarwaschmitteln. Dadurch kann auch die Menge herkömmlicher Builder in festen Waschmitteln (Carbonate, Silikate, Phosphate, Citrate, Zeolithe) reduziert oder ersetzt werden. Die Calciumbindungskapazität für IDS-Na4-Salz beträgt ca. 230 mg CaCO3/g Na-Salz und liegt zwischen der Kapazität von DTPA-Na5-Salz (210 mg CaCO3/g Na-Salz) und EDTA-Na4-Salz (280 mg CaCO3/g Na-Salz).
Auf der Komplexierung von Erdalkali- und Schwermetallionen beruhen auch die meisten anderen Anwendungen von IDS-Na-Salz, z. B. in industriellen Reinigern zur Entfernung von Biofilmen und Kalkablagerungen, Kosmetika, in der Galvanik, im Bau (Abbindeverzögerer), Textil (Schutz gegen Vergrauung) und Papier. Der Zusatz von IDS-Na-Salz anstatt der gängigen Phosphonate zu festen Waschmittelformulierungen inhibiert in bleichmittelhaltigen Waschlaugen die von Schwermetallen katalysierte Zersetzung von Wasserstoffperoxid.
Komplexe mit Fe3+-, Cu2+-, Zn2+- und Mn2+-Ionen finden Einsatz als Mikronährstoffe, die für Pflanzen wichtige Spurenelemente in gut resorbierbarer Form bereitstellen; sowohl granuliert als Bodendünger als auch gelöst als Blattspray. Die in Pflanzenschutzanwendungen weitverbreiteten gängigen Komplexbildner für Spurenelemente, wie z. B. EDTA, DTPA (Diethylentriamin-pentaessigsäure), EDDHA (Ethylendiamin-dihydroxyphenylessigsäure) oder HBED (N,N‘-di(2-Hydroxybenzyl)-ethylendiamin-N,N‘-diessigsäure) sind ausnahmslos schwer- bis praktisch nicht-bioabbaubar. IDHA-Spurenelementkomplexe bieten dagegen eine interessante Alternative.[11]
Stereoisomerie
BearbeitenDer Herstellprozess aus den achiralen Ausgangsstoffen liefert eine Mischung aus drei Epimeren[12]: (R,R)-iminodisuccinat, (R,S)-iminodisuccinat, and (S,S)-iminodisuccinat. Die beiden meso-Verbindungen [R,S] und [S,R] sind identisch. Der enzymatische Abbau liefert in den beiden ersten Fällen D-Asparaginsäure und Fumarsäure, bei letzterem L-Asparaginsäure und Fumarsäure, die weiter verstoffwechselt werden.
Einzelnachweise
Bearbeiten- ↑ a b Van Iperen International: IDHA-chelates
- ↑ Datenblatt Iminodisuccinat Tetranatriumsalz (PDF) bei Carl Roth, abgerufen am 11. September 2024.
- ↑ Lanxess: Baypure CX 100/34% ( vom 10. Dezember 2014 im Internet Archive), Safety Data Sheet.
- ↑ a b c nicnas.gov.au: Aspartic acid, N-(1,2-dicarboxyethyl)-, tetrasodium salt ( vom 12. Februar 2014 im Internet Archive), August 2002.
- ↑ a b c d D. Kołodyńska, H. Hubicka, Z. Hubicki: Studies of application of monodisperse anion exchangers in sorption of heavy metal complexes with IDS. In: Desalination. Band 239, Nr. 1–3, S. 216–228, doi:10.1016/j.desal.2008.02.024.
- ↑ harmonisierte Einstufung vor. Wiedergegeben ist eine von einer Selbsteinstufung durch Inverkehrbringer abgeleitete Kennzeichnung von tetrasodium;2-(1,2-dicarboxylatoethylamino)butanedioate im Classification and Labelling Inventory der Europäischen Chemikalienagentur (ECHA), abgerufen am 28. Juli 2019. Für diesen Stoff liegt noch keine
- ↑ National Industrial Chemicals Notification and Assessment Scheme: STD1018 Public Report PDF.pdf, abgerufen am 11. September 2024
- ↑ a b Dorota Kołodyńska: Chelating Agents of a New Generation as an Alternative to Conventional Chelators for Heavy Metal Ions Removal from Different Waste Waters. In: Robert Y. Ning (Hrsg.): Expanding Issues in Desalination. InTech, 2011, ISBN 978-953-307-624-9, S. 339–370, doi:10.5772/21180 (Hier: S. 344).
- ↑ Patent US6107518: Preparation and use of iminodisuccinic acid salts. Veröffentlicht am 22. August 2000, Anmelder: Bayer AG, Erfinder: Torsten Groth, Winfried Joentgen, Paul Wagner, Frank Dobert, Eckhard Wenderoth, Thomas Roick.
- ↑ a b c d e f Lanxess AG, General Product Information: Baypure
- ↑ a b ADOB: Biodegradable chelates ( vom 12. Mai 2014 im Internet Archive)
- ↑ E. Sanchez et al.: Iminodisuccinate Pathway Map, Manchester College, April 17, 2013