Zerfallsreihe

Abfolge der nacheinander entstehenden Produkte eines radioaktiven Zerfalls
(Weitergeleitet von Tochternuklid)

Eine Zerfallsreihe im allgemeinen Sinn ist die Abfolge der nacheinander entstehenden Produkte eines radioaktiven Zerfalls. Sie bildet sich, indem ein Radionuklid sich in ein anderes, dieses in ein drittes umwandelt usw. („zerfällt“). Das zuerst entstehende Nuklid wird Tochternuklid genannt, das dem Tochternuklid folgende Enkelnuklid, das dem Enkelnuklid folgende Urenkelnuklid usw.

Aus einer vorhandenen Menge eines instabilen Nuklids bildet sich durch Zerfall ein Gemisch der Nuklide, die ihm in der Zerfallsreihe folgen, bevor irgendwann alle Atomkerne die Reihe bis zum Endnuklid durchlaufen haben. In dem Gemisch sind Nuklide mit kurzer Halbwertszeit nur in geringer Menge vorhanden, während solche mit längerer Halbwertszeit sich entsprechend stärker ansammeln.

Die drei natürlichen Zerfallsreihen

Bearbeiten

Praktisch und historisch wichtig sind die Zerfallsreihen der drei primordialen Radionuklide Uran-238, Uran-235 und Thorium-232, auch Natürlich radioaktive Familien genannt.[1] Sie entstehen durch Alpha- und Beta-Zerfall, die mehr oder weniger regelmäßig abwechselnd aufeinander folgen. Manche der beteiligten Nuklide haben auch die alternativ mögliche, aber seltene Zerfallsart Spontanspaltung; sie führt aus der jeweiligen Zerfallsreihe hinaus und wird hier nicht beachtet.

Ein Alphazerfall verringert die Massenzahl des Atomkerns um 4 Einheiten, ein Betazerfall lässt sie unverändert. Schreibt man die Massenzahl A als A = 4n+m (dabei ist n irgendeine natürliche Zahl und m eine der Zahlen 0, 1, 2 oder 3), bleibt deshalb m innerhalb einer solchen Zerfallsreihe stets konstant. Die drei genannten Anfangsnuklide haben verschiedene Werte von m. Daher erzeugt

Thorium-232 ist zwar primordial, aber nach heutiger Kenntnis sind auch seine Vorgängernuklide bis zum Plutonium-244 auf der Erde vorhanden.[2]

Eine vierte Zerfallsreihe

Bearbeiten

In der obigen (4n+m)-Systematik „fehlt“ eine Reihe mit m = 1. Da es im Massenzahlbereich von Uran und Thorium kein primordiales Nuklid mit A = 4n+1 gibt, kommt eine solche Zerfallsreihe in der Natur nicht (mehr) vor. Der Systematik zuliebe wird aber die Zerfallsreihe der künstlich erzeugbaren Nuklide Plutonium-241 oder Neptunium-237, die Neptunium-Reihe, als diese fehlende vierte Reihe betrachtet.[3] Nur das letzte Radionuklid dieser Reihe, Bismut-209, ist wegen seiner extrem langen Halbwertszeit noch vorhanden. Es wurde lange für das Endnuklid gehalten, bis 2003 entdeckt wurde, dass es ein Alphastrahler mit 19 Trillionen Jahren Halbwertszeit ist. Das Endnuklid ist daher Thallium-205.

Geringe Mengen Np-237 entstehen durch (n,2n) Reaktionen (ein [schnelles] Neutron trifft auf und wird absorbiert, zwei Neutronen werden ausgestoßen) in Uran-238 gefolgt von Betazerfall des kurzlebigen Uran-237. Die dafür benötigten schnellen Neutronen stammen aus Spontanspaltung oder kosmischer Strahlung. Diese Reaktion ist jedoch derart selten, dass inzwischen menschengemachtes Np-237 in weit größeren Ausmaß auf der Erde vorhanden ist als jenes, welches diesem Prozess entspringt. Die Reaktion, welche in Kernreaktoren üblicherweise zum größten Anteil Np-237 beträgt, ist Neutroneneinfang in Uran-235, welcher nicht zur Spaltung führt (bei thermischen Neutronen erfolgt in etwa 14,5 % der Reaktionen zwischen 235U und Neutronen keine Spaltung, sondern die Bildung von 236U) gefolgt von Neutroneneinfang in Uran-236 und wiederum Betazerfall von Uran-237. Im Naturreaktor Oklo herrschten vor fast zwei Milliarden Jahren sehr ähnliche Bedingungen wie in menschengemachten Leichtwasserreaktoren, sodass zweifellos auch Np-237 gebildet wurde. Dies ist jedoch seither zerfallen. Aufgrund der höheren Geschwindigkeit der Neutronen (Abwesenheit von Neutronenmoderatoren), der geringen Menge verfügbaren 235U, und der – im Vergleich zu Kernreaktoren – niedrigen Neutronenflussdichte, ist die oben beschriebene Reaktion in Uranerzen heutzutage jedoch kaum noch anzutreffen. Eine weitere Quelle von Np-237 ist der Zerfall von Americium-241. Dieses künstliche Radionuklid ist ein Alphastrahler mit ~432 Jahren Halbwertszeit und findet in Rauchmeldern vor allem im angloamerikanischen Raum Anwendung. Da – insbesondere in der Vergangenheit – die Entsorgung nicht immer sachgemäß erfolgte sind inzwischen geringe aber nachweisbare Mengen Neptunium in die Umwelt gelangt, sodass diese Zerfallsreihe „reaktiviert“ worden ist.

Lage in der Nuklidkarte

Bearbeiten
N =  124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150 
Curium Z = 96





















242Cm
 

244Cm
 

246Cm
 
Americium Z = 95




















240Am
   
241Am
 
242Am
   
243Am
 
244Am
 
Plutonium Z = 94

















236Pu
 
237Pu
   
238Pu
 
239Pu
 
240Pu
 
241Pu
   
242Pu
 
243Pu
 
244Pu
 
Neptunium Z = 93















233Np
   
234Np
 
235Np
   
236Np
     
237Np
 
238Np
 
239Np
 
240Np
 


Uran Z = 92













230U
 
231U
   
232U
 
233U
 
234U
 
235U
 
236U
 
237U
 
238U
 
239U
 
240U
 

Protactinium Z = 91













229Pa
   
230Pa
     
231Pa
 
232Pa
   
233Pa
 
234Pa
 






Thorium Z = 90











226Th
 
227Th
 
228Th
 
229Th
 
230Th
 
231Th
   
232Th
 
233Th
 
234Th
 





Actinium Z = 89











225Ac
 
226Ac
     
227Ac
   
228Ac
 










Radium Z = 88








221Ra
 
222Ra
 
223Ra
 
224Ra
 
225Ra
 
226Ra
 
227Ra
 
228Ra
 









Francium Z = 87









221Fr
   
222Fr
 
223Fr
   













Radon Z = 86






217Rn
 
218Rn
 
219Rn
 
220Rn
 

222Rn
 













Astat Z = 85





215At
 

217At
   
218At
   
219At
   















Polonium Z = 84

210Po
 
211Po
 
212Po
 
213Po
 
214Po
 
215Po
   
216Po
 

218Po
   















Bismut Z = 83

209Bi
 
210Bi
   
211Bi
   
212Bi
   
213Bi
   
214Bi
   
215Bi
 

















Blei Z = 82 206Pb
207Pb
208Pb
209Pb
 
210Pb
   
211Pb
 
212Pb
 

214Pb
 

















Thallium Z = 81 205Tl
206Tl
 
207Tl
 
208Tl
 
209Tl
 
210Tl
 




















Quecksilber Z = 80

206Hg
 























N =  124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150 
 
Legende:
Uran-Radium-Reihe
Uran-Actinium-Reihe
(Plutonium-) Thorium-Reihe
(Plutonium-)Neptunium-Reihe
stabiles oder primordiales Nuklid  
 
Fortsetzung
Fortsetzung
Fortsetzung
Fortsetzung
 
 

Historische Bezeichnungen

Bearbeiten

In der klassischen Zeit der Erforschung der radioaktiven Zerfallsreihen – also im frühen 20. Jahrhundert – wurden die verschiedenen Nuklide mit anderen Namen bezeichnet, an denen sich die Zugehörigkeit zu einer natürlichen Zerfallsreihe und die Ähnlichkeit in den Eigenschaften erkennen ließ (z. B. sind Radon, Thoron und Actinon allesamt Edelgase):[4]

Nuklid historischer Name
kurz Langform
238U UI Uran I
235U AcU Actinuran
234U UII Uran II
234mPa UX2 Uran X2
234Pa UZ Uran Z
231Pa Pa Protactinium
234Th UX1 Uran X1
232Th Th Thorium
231Th UY Uran Y
230Th Io Ionium
228Th RdTh Radiothor
227Th RdAc Radioactinium
228Ac MsTh2 Mesothor 2
227Ac Ac Actinium
228Ra MsTh1 Mesothor 1
226Ra Ra Radium
224Ra ThX Thorium X
223Ra AcX Actinium X
223Fr AcK Actinium K
222Rn Rn Radon
220Rn Tn Thoron
219Rn An Actinon
218Po RaA Radium A
216Po ThA Thorium A
215Po AcA Actinium A
214Po RaC' Radium C'
212Po ThC' Thorium C'
211Po AcC' Actinium C'
210Po RaF Radium F
214Bi RaC Radium C
212Bi ThC Thorium C
211Bi AcC Actinium C
210Bi RaE Radium E
214Pb RaB Radium B
212Pb ThB Thorium B
211Pb AcB Actinium B
210Pb RaD Radium D
208Pb ThD Thorium D
207Pb AcD Actinium D
206Pb RaG Radium G
210Tl RaC" Radium C"
208Tl ThC" Thorium C"
207Tl AcC" Actinium C"

Die drei natürlichen Zerfallsreihen sähen in dieser alten Bezeichnungsweise folgendermaßen aus:

  • Uran-Radium-Reihe: UI → UX1 → UX2 (→ UZ) → UII → Io → Ra → Rn → RaA → RaB → RaC → RaC' (oder RaC") → RaD → RaE → RaF → RaG
  • Uran-Actinium-Reihe: AcU → UY → Pa → Ac → RdAc (oder AcK) → AcX → An → AcA → AcB → AcC → AcC" (oder AcC') → AcD
  • Thorium-Reihe: Th → MsTh1 → MsTh2 → RdTh → ThX → Tn → ThA → ThB → ThC → ThC' (oder ThC") → ThD

Berechnung der Konzentration von Nukliden einer Zerfallsreihe

Bearbeiten

Nuklide zerfallen nach einer Kinetik erster Ordnung (vgl. Zerfallsgesetz), so dass die zeitabhängige Konzentration eines einzelnen Nuklids recht einfach zu berechnen ist. Die Fragestellung wird deutlich komplizierter, wenn das Nuklid als Glied einer Zerfallsreihe aus Vorläufernukliden laufend nachgebildet wird. Ein kurzer und übersichtlicher Weg zur Berechnung seiner Konzentration unter dieser Voraussetzung findet sich bei Jens Christoffers (1986);[5] der Autor gibt auch einen Algorithmus zur Programmierung der Berechnung an.

Radionuklide außerhalb der Zerfallsreihen

Bearbeiten

Es gibt einige Betastrahler, welche nicht aufgrund zu hoher Atommasse, sondern aufgrund des instabilen Verhältnisses von Neutronen zu Protonen radioaktiv sind. Dies ist der Grund für die „Lücken“ im Periodensystem der stabilen Elemente bei den Kernladungszahlen 43 und 61 (abgesehen von diesen beiden haben alle Elemente von Wasserstoff bis Blei nach heutiger Kenntnis mindestens ein stabiles Isotop, aber kein Element mit Kernladungszahl >82 hat stabile Isotope). Die Elemente Technetium und Promethium, welche dieser Kernladungszahl entsprechen, wurden erstmals als Spaltprodukte nachgewiesen und entsprechend benannt („das durch Technologie entdeckte Element“ bzw. „das Element des Feuerbringers“). Jedoch ist inzwischen bekannt, dass sie in der Natur in extrem geringer Konzentration durch Spontanspaltung entstehen und respektive durch Betazerfall wieder zerstört werden. Technetium-99, das bedeutendste (wenn auch nicht das langlebigste) Technetium-Isotop, wird jedoch auch durch Neutroneneinfang in Molybdän-98, gefolgt von Betazerfall, hergestellt. Diese Produktionsmethode wird vom Menschen angewandt, kommt jedoch auch in der Natur vor, wenn Molybdänmineralien entsprechenden Neutronenströmen ausgesetzt sind.

Mengenmäßig der bedeutendste Betastrahler auf Erden (und auch im menschlichen Körper) ist jedoch Kalium-40, ein sehr langlebiges Kalium-Isotop, welches sowohl zu Argon-40 als auch (häufiger) zu Calcium-40 zerfallen kann. Die Menge an Kalium-40, welche einst auf Erden vorhanden gewesen sein muss, lässt sich nicht nur durch „Zurückrechnen“ abschätzen, sondern auch anhand der Tatsache, dass Argon das dritthäufigste Gas der Erdatmosphäre ist und dabei – anders als Argon in der Sonne – fast ausschließlich aus 40Ar besteht, also mit an Sicherheit grenzender Wahrscheinlichkeit aus dem Zerfall von 40K entstanden ist.

Beryllium-8 ist derartig instabil, dass in Sternen das „Heliumbrennen“ das beinahe gleichzeitige Aufeinandertreffen dreier Alphateilchen erfordert, da Beryillium-8 binnen Bruchteilen von Sekunden in zwei Alphateilchen zerfällt. Da es nicht durch radioaktiven Zerfall entsteht, ist Beryllium kein Mitglied einer Zerfallsreihe, auch wenn seine Massenzahl =2α+0 ist.

Kosmogene Radionuklide finden sich auf der Erde in einem dynamischen Fließgleichgewicht, wobei in der oberen Atmosphäre größenordnungsmäßig so viel gebildet wird wie im gleichen Zeitraum zerfällt. Bekanntestes dieser Radionuklide ist Kohlenstoff-14, welches zur Datierung mittels Radiokarbonmethode genutzt wird.

Siehe auch

Bearbeiten
Bearbeiten
Commons: Zerfallsreihe – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

Bearbeiten
  1. Karlsruher Nuklidkarte. Nachdruck der 6. Auflage. Karlsruhe 1998
  2. D. C. Hoffman, F. O. Lawrence, J. L. Mewherter, F. M. Rourke: Detection of Plutonium-244 in Nature. In: Nature 234, 1971, S. 132–134, doi:10.1038/234132a0
  3. E. B. Paul: Nuclear and Particle Physics. North-Holland, 1969, S. 41
  4. C. M. Lederer, J. M. Hollander, I. Perlman: Table of Isotopes. 6. Auflage. Wiley & Sons, New York 1968
  5. https://www.uni-oldenburg.de/fileadmin/user_upload/chemie/ag/occhris/download/pdf1.pdf