Unruh-Effekt

Teil der Quantenfeldtheorie

Der Unruh-Effekt ist eine Vorhersage der Quantenfeldtheorie: Ein im Vakuum beschleunigter Beobachter sieht anstelle des Vakuums ein Gas von Elementarteilchen, z. B. Photonen, Elektronen oder Positronen. Dies ist eine Folge von lokalen Fluktuationen der Vakuums. Die Temperatur dieses Gases ist proportional zur Beschleunigung.

Dabei bedeutet

Der Effekt wurde 1976 von William Unruh vorhergesagt.

Es besteht ein enger Zusammenhang mit der Hawking-Strahlung Schwarzer Löcher, auf den Unruh bereits in seiner Originalarbeit hinwies: Ein knapp über dem Ereignishorizont eines schwarzen Loches fixierter Beobachter ist einem Schwerefeld ausgesetzt. Nach dem Äquivalenzprinzip entspricht das Schwerefeld einer Beschleunigung, und der Beobachter sieht daher eine Strahlung mit der entsprechenden Unruh-Temperatur. Diese Strahlung erreicht einen weit vom schwarzen Loch entfernt ruhenden Beobachter (nach gravitativer Rotverschiebung) als Hawking-Strahlung.

Die Unruh-Temperatur ist außerordentlich klein: Für eine Beschleunigung, die auf einer Strecke von einem Mikrometer relativistische Geschwindigkeit erreicht, liegt die Temperatur knapp unter dem Niveau des kosmischen Mikrowellenhintergrunds. Um eine Temperaturänderung von einem Grad Celsius (oder einem Kelvin) zu erleben, müsste man um 1020 m/s2 beschleunigen, also in 10−12 s von 0 auf 90 % der Lichtgeschwindigkeit.

Der Unruh-Effekt beschreibt physikalische Vorgänge aus der Sicht eines beschleunigten Beobachters oder Objekts. So kann ein beschleunigter Detektor, der an ein quantisiertes Feld gekoppelt wird, das sich in einem Vakuumzustand bezüglich eines Inertialsystems befindet, die lokalen Fluktuationen des Vakuums registrieren.

Möglichkeit einer experimentellen Verifikation

Bearbeiten

Eine experimentelle Verifikation mit direkter Messung der Temperatur ist wegen der erforderlichen großen Beschleunigung aussichtslos.

Der Unruh-Effekt ist aber verwendbar, um Rechnungen für Phänomene im ruhenden oder beschleunigten Koordinatensystem auszuführen. Ein Beispiel ist die Depolarisierung von Elektronen in Speicherringen. Bei diesem Analogon zum Unruh-Effekt stimmen Theorie und Experiment überein.

Hawking-Strahlung, ein anderes Analogon des Unruh-Effekts, wäre beobachtbar, wenn es schwarze Löcher gäbe, mit einer Masse kleiner etwa als die des Zwergplaneten Ceres.

Schematische Herleitung

Bearbeiten

Der Unruh-Effekt wird oft durch Entwickeln von Quantenfeldern in Eigenmoden in verschiedenen Koordinatensystemen hergeleitet. Gleichsetzen der Felder und Vergleich der Fourier-Moden führt dann über eine Bogoliubov-Transformation zum Ziel. Herleitungen dieser Art kaschieren eher die geometrische Natur des Effekts. Ausgangspunkt einer allgemeineren Herleitung sind die Matrixelemente des Vakuum-Dichteoperators   einer Quantenfeldtheorie mit Feldern  ,

 

Hierbei ist   der quantenmechanische Grundzustand mit Energie  , die Symbole  ,   bzw.   bezeichnen quantenmechanische Zustände mit vorgegebener Konfiguration der Felder. In  -Darstellung ist (schematisch) z. B.  . Der Zustand   ist beliebig, die einzige Forderung ist   Das Symbol   steht für den Hamiltonoperator des Systems, so dass   bei großem   auf den Grundzustand   projiziert. Das Symbol   ist ein Normierungsfaktor.

Auf der rechten Seite der Gleichung für   erkennt man die Entwicklung eines generischen Zustands   in imaginärer Zeit   von   zu einem Zustand   bei  . Bei   ändert sich die Wellenfunktion unstetig zu  , und entwickelt sich dann weiter zu   bei  .

 
Randbedingungen für die  -Felder in der  - -Ebene für eine Berechnung der Vakuum-Dichtematrix. Die Wirkung der Transfer-Matrizen   und   ist mit gestrichelten Linien angedeutet.

Es werde jetzt zwischen den Feldern   bei   und den Feldern   bei   unterschieden (es reicht, sich auf ein System mit nur einer Raumdimension zu beschränken). Der Vakuum-Dichteoperator ist dann

 

Es werde angenommen, dass nur die Felder   bei   von Interesse sind. Technisch läuft dies auf die Spur des Dichteoperators hinaus. D.h. bei   ist   zu setzen und über die   ist zu integrieren. Das Ergebnis ist die reduzierte Dichtematrix für den Bereich  ,

 

Der Rest der Herleitung ist reine Geometrie und Interpretation. Der Ausdruck rechts ist interpretierbar als die Entwicklung eines generischen Zustands   in imaginärer Zeit von   bis   Bei   und   ist die Feldkonfiguration   vorgegeben, bei   und   ist die Feldkonfiguration   vorgegeben. Bei   und   gibt es keine Unstetigkeit mehr. Ab   entwickelt sich die Wellenfunktion zu  . Man kann jetzt folgendermaßen argumentieren.

  • Quantenfeldtheorien mit imaginärer Zeitvariable sind Feldtheorien der klassischen statistischen Physik. Die imaginäre Zeitvariable   ist dabei nur eine weitere Raumdimension (die Äquivalenz ist in der Pfadintegraldarstellung der Quantenfeldtheorie explizit realisiert).
  • Der Hamilton-Operator   der Quantenfeldtheorie entspricht der Transfer-Matrix der klassischen Feldtheorie (  ist ein Generator, die Transfer-Matrix ist eine kleine Transformation  ).
  • Der Erwartungswert   mit einer Unstetigkeit bei     lässt sich anstatt von   bis   auch in Polarkoordinaten  ,   auswerten. Die Unstetigkeit tritt dann bei   auf.
  • Die klassische Feldtheorie zu einer relativistisch invarianten Quantenfeldtheorie ist räumlich isotrop, es gibt daher überall eine Transfer-Matrix in beliebige Richtung, insbesondere auch in  -Richtung. Die Vakuum-Dichtematrix des Halbraums   lässt sich daher schreiben  

Ausgedrückt durch eine lokale Transfer-Matrix schreibt sich die Exponentialfunktion  , wobei   um eine  -unabhängige Länge transferiert. Dies entspricht lokal einer thermischen Zustandsdichte mit reziproker Temperatur   und Energie  .

Das zu dieser thermischen Zustandsdichte gehörende physikalische Bezugssystem ergibt sich, wenn man die (formal) imaginäre Zeit   reell macht, d. h.  . Die Polarkoordinaten werden dann zu Rindler-Koordinaten für den Keil  ,  . Ein Beobachter bei konstanter Rindler-Koordinate   ist einer konstanten Beschleunigung   ausgesetzt, und die Vakuum-Dichtematrix wird zu einer thermischen Dichtematrix mit der Unruh-Temperatur. Bei   und   ausgesendete Signale erreichen einen Beobachter bei konstanter Rindler-Koordinate   nicht, d. h. der Bereich   befindet sich für den Beobachter hinter einem Ereignis-Horizont.

Dass sich der Vakuum-Dichteoperator der Rindler-Raumzeit in der Form   schreiben lässt, ist trivial. Dies ist für alle Dichteoperatoren möglich. Ungewöhnlich an der Rindler-Raumzeit ist, dass der „modulare“ Hamiltonoperator   Translationen in der Eigenzeit konstant beschleunigter Beobachter generiert. Im allgemeinen Fall hat der modulare Hamiltonoperator keine anschauliche physikalische Bedeutung.

Die Elimination der Freiheitsgrade bei   ist ein essentieller Schritt der Herleitung, und man kann zeigen, dass dabei die Verschränkung der Feldfreiheitsgrade bei   und   eine Rolle spielt.

Literatur

Bearbeiten
Bearbeiten