Vollkonjunktion
Als Vollkonjunktion (auch Minterm oder Elementarkonjunktion) bezeichnet man in der Aussagenlogik einen speziellen Konjunktionsterm, d. h. eine Anzahl von Literalen (booleschen Variablen), die alle durch ein logisches und () verknüpft sind. Dabei müssen alle Variablen der betrachteten -stelligen booleschen Funktion im Konjunktionsterm vorkommen. Vollkonjunktionen lassen sich zu einer disjunktiven Normalform zusammensetzen, beispielsweise beim Verfahren nach Quine und McCluskey.
Beispiele
BearbeitenBeispiele für 3-stellige boolesche Funktionen
Standardnummerierung der Vollkonjunktionen
BearbeitenVollkonjunktionen lassen sich auf natürliche Weise nummerieren. Man denkt sich dabei die Variablen in einer Reihe notiert, z. B. . Kommt für eine konkrete Vollkonjunktion das jeweilige Literal negiert vor, so ersetzt man es durch eine 0, sonst durch eine 1. Es entsteht eine Binärzahl, die man dezimal interpretieren kann. Diese Dezimalzahl bezeichnet man als die Nummer oder den Index des Minterms. Will man diesen Minterm über seinen Index bezeichnen, so schreibt man . Analog geht dies mit den Maxtermen bei Disjunktionen.
Vergleich Minterm / Maxterm
BearbeitenIn folgender Tabelle ist der Unterschied zwischen der Maxterm- und Mintermdarstellung ersichtlich:
Index | Minterm | Maxterm | |||
---|---|---|---|---|---|
0 | 0 | 0 | 0 | ||
1 | 0 | 0 | 1 | ||
2 | 0 | 1 | 0 | ||
3 | 0 | 1 | 1 | ||
4 | 1 | 0 | 0 | ||
5 | 1 | 0 | 1 | ||
6 | 1 | 1 | 0 | ||
7 | 1 | 1 | 1 |
Realisierung von Decoder-Schaltungen mit Mintermen / Maxtermen:
Minterm | Maxterm | |
---|---|---|
0 | NOR-Gatter | AND-Gatter |
1 | OR-Gatter | NAND-Gatter |
Bezeichnungen
BearbeitenMinterme
Bearbeiten- Ein einziger Minterm:
- Für genau eine Belegung Funktionswert 1
- Minimalität:
- maximale Anzahl an Nullen
- minimale Anzahl an Einsen
(abgesehen von trivialer Nullfunktion)
Maxterme
Bearbeiten- Ein einziger Maxterm:
- Für genau eine Belegung Funktionswert 0
- Maximalität:
- maximale Anzahl an Einsen
- minimale Anzahl an Nullen
(abgesehen von trivialer Einsfunktion)
Bezug zum Karnaugh-Veitch-Diagramm
BearbeitenMan spricht auch vom Minterm einer Funktion , wenn dieser impliziert, d. h. wenn gilt
- .
Dabei ist der Vektor der Eingangsvariablen. Derartige Minterme entsprechen umkehrbar eindeutig denjenigen Feldern eines Karnaugh-Veitch-Diagramms, die für die betrachtete Funktion den Wert 1 enthalten.