Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Angaben ohne ausreichenden Beleg könnten demnächst entfernt werden. Bitte hilf Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst.
Das zentrale Schwankungsintervall ist ein Begriff aus der mathematischen Statistik. Es sagt etwas über die Präzision der Lageschätzung eines Parameters (zum Beispiel eines Mittelwertes) aus. Das Schwankungsintervall schließt einen Bereich um den wahren Wert des Parameters in der Grundgesamtheit ein, der – vereinfacht gesprochen – mit einer zuvor festgelegten Sicherheitswahrscheinlichkeit den aus der Stichprobe geschätzten Parameter enthält.
Eine Schätzfunktion ist eine Zufallsvariable für einen unbekannten wahren Parameter einer Grundgesamtheit. Daher besitzt sie eine Verteilung, und wir können mit der Wahrscheinlichkeit Intervalle bezüglich der Realisierung angeben.
Das heißt, ziehen wir eine Stichprobe mit den Werten , dann können wir einen Schätzwert berechnen und mit einer vorgegebenen Wahrscheinlichkeit ein Intervall angeben, in dem wir den Schätzwert erwarten.
Die zentralen Schwankungsintervalle haben einen Nachteil: Die Intervallgrenzen enthalten den unbekannten Parameter (im Gegensatz zum Konfidenzintervall). Trotzdem liefert das zentrale Schwankungsintervall eine wertvolle Information, nämlich die Größe der Abweichung eines aus der Stichprobe geschätzten Parameters vom wahren Parameter.
Parameter
Bedingung
Zentrales Schwankungsintervall
, bekannt
, unbekannt
beliebig verteilt,
( bekannt)
( unbekannt)
, bekannt
, unbekannt
Bernoulli verteilt mit Parameter
bzw.
Dabei sind
die Sicherheitswahrscheinlichkeit,
, und die -Quantile der Standardnormal-, t- und Chi-Quadrat-Verteilung mit Freiheitsgraden,
Eine dichotome Zufallsvariable Anzahl der Erfolge bei Ziehungen mit Zurücklegen ist binomialverteilt in Abhängigkeit von der unbekannten Erfolgswahrscheinlichkeit . Bei der Erfüllung der Approximationsbedingungen ist normalverteilt und auch die Schätzfunktion . Das zentrale Schwankungsintervall ergibt sich daher zu
.
Für die praktischen Berechnungen kann man entweder mit abschätzen. Alternativ kann man mit ersetzen, und ist der Anteilswert aus der Stichprobe.
Beispiel 1: Wenn wir die mittlere Studiendauer in Semestern von Studenten auf genau schätzen wollen mit einer Sicherheitswahrscheinlichkeit , dann bedeutet dies, dass das zentrale Schwankungsintervall vom wahren Wert um nicht mehr als Semester abweichen darf. Die Länge des zentralen Schwankungsintervalls muss also Semester sein.
Für die mittlere Studiendauer ist nicht bekannt, ob sie normalverteilt ist, d. h. es folgt
,
d. h. in Abhängigkeit von () lässt sich ein Stichprobenumfang bestimmen, um diese Genauigkeit zu erreichen:
.
Mit Semester müssen also 1537 Studenten befragt werden, ist Semester, dann wären es bereits 6147 Studenten nötig. In diesem Beispiel ist nur die Lage, nicht aber die Breite des zentralen Schwankungsintervalls vom wahren Parameter abhängig.
Beispiel 2: In Wahlumfragen werden üblicherweise ca. 1000 Wahlberechtigte befragt. Mit welcher Genauigkeit bei einer Sicherheitswahrscheinlichkeit von kann ein Wahlforscher das Ergebnis einer Partei vorhersagen?
Die Länge des zentralen Schwankungsintervalls ist
,
und mit , ergibt sich eine Länge von . D. h. mit 95 % Wahrscheinlichkeit wird der Anteilswert aus der Stichprobe um maximal vom wahren Anteilswert abweichen. Bei einem wahren Anteilswert von ergibt sich das zentrale Schwankungsintervall also zu ; diese große Ungenauigkeit ist einer der Gründe, warum in der Presse/Meinungsforschungsinstituten selten die Genauigkeit von Prognosen mit angegeben wird.
Zentrales Schwankungsintervall und Konfidenzintervall