Abelsche Identität

mathematischer Satz

Die abelsche Identität ist ein Ausdruck für die Wronski-Determinante zweier linear unabhängiger homogener Lösungen einer linearen gewöhnlichen Differentialgleichung zweiter Ordnung. Die Beziehung wurde 1827 von dem norwegischen Mathematiker Niels Henrik Abel (1802–1829) hergeleitet.

Gegeben sei die lineare gewöhnliche Differentialgleichung zweiter Ordnung

 .

Für die Wronski-Determinante von zwei Lösungen der Differentialgleichung gilt dann

 .

Nach Definition ist  , worin   ein Fundamentalsystem für die Differentialgleichung

  mit  

ist. Gemäß der liouvilleschen Formel gilt

 .
 

Anwendung

Bearbeiten

Die abelsche Identität erlaubt es, die Wronski-Determinante bei bekanntem Wert an der Stelle   für alle anderen   zu berechnen. Insbesondere ist die Wronski-Determinante konstant, wenn   gilt. Aufgrund der Beziehung, die die Wronski-Determinante zwischen zwei linear unabhängigen Lösungen herstellt, erlaubt sie unter Umständen, die eine aus der anderen zu berechnen.

Literatur

Bearbeiten
  • W. Boyce, R. Di Prima: Elementary differential equations and boundary value problems. Wiley, New York 1969.
  • Gerald Teschl: Ordinary Differential Equations and Dynamical Systems (= Graduate Studies in Mathematics. Band 140). American Mathematical Society, Providence 2012, ISBN 978-0-8218-8328-0 (mat.univie.ac.at).
Bearbeiten