Additionsverfahren (Mathematik)

Verfahren, das zur Lösung von Gleichungssystemen genutzt werden kann

Das Additionsverfahren ist ein Verfahren zur Lösung von Gleichungssystemen. Das wahrscheinlich bekannteste Verfahren zur Lösung von Gleichungssystemen, das Gaußsche Eliminationsverfahren, bedient sich des Additionsverfahrens, es ist aber auch allgemein bei der Lösung von Gleichungssystemen von Bedeutung.

Veranschaulichung des Additionsverfahrens: Aus und folgt das Gleichungssystem . Wenn nämlich beide Waagen im Vorfeld im Gleichgewicht sind, so ist dies die Waage auch, wenn man die jeweiligen Seiten zusammenlegt.

Beim Additionsverfahren werden Gleichungen addiert. Dies geschieht in der Regel so, dass eine oder mehrere Variablen (Unbekannte) in den Gleichungen eliminiert werden.

Rechtfertigung (Anschaulich)

Bearbeiten

Als Beispiel soll das folgende lineare Gleichungssystem gelöst werden:

 

Man kann sich beide Gleichungen als ausgeglichene Waagen vorstellen. Waage 1 hat in der linken Schale   und in der rechten   liegen. Waage 2 hat in der linken Schale   und in der rechten   liegen.

Legt man die Inhalte der linken Schalen zusammen, müssen diese also so viel wiegen wie die rechten Schalen zusammen. Als Formel erhält man:

 

Sortiert man die linke Seite der Gleichung nach den Unbekannten, hebt sich   weg und man erhält eine Lösung für  :

 

Auch das vorherige Vervielfachen einer Gleichung ändert nichts am Gleichgewicht der jeweiligen Waage. Ein Mehrfachadditionsverfahren wie   oder ein Subtraktionsverfahren wie   ist also lediglich eine abkürzende Schreibweise für eine Äquivalenzumformung mit anschließendem Additionsverfahren. Für   wird die zweite Gleichung zunächst verdreifacht und dann beide Gleichungen addiert (ein ausführliches Beispiel dazu steht unten). Für   wird die zweite Gleichung zunächst auf beiden Seiten mit   multipliziert und dann beide Gleichungen addiert.

Beispiel

Bearbeiten

Mit Hilfe des Additionsverfahrens soll das folgende Gleichungssystem gelöst werden:

 

Dazu muss eine der beiden Gleichungen so umgeformt werden, dass bei einer Addition der beiden Gleichungen eine Variable verschwindet. In diesem Beispiel multiplizieren wir dazu Gleichung (2) auf beiden Seiten mit  .

 

Dadurch erhalten wir ein gleichwertiges Gleichungssystem, in dem der Term   vorkommt.

 

Nun werden beide Gleichungen des Systems addiert und somit in einer Gleichung zusammengefasst:

 

Anschließend löst man nach der verbliebenen Variablen   auf:

 

Damit ist der Wert der ersten Variable bekannt. Diesen Wert ( ) setzen wir in Gleichung (1) ein, um den Wert der zweiten Variable zu berechnen.

 

Dadurch erhalten wir den Wert für die zweite Variable. Die Lösung des Gleichungssystems gibt man als Lösungsmenge an, also  .

Siehe auch

Bearbeiten