MovGP0 | Über mich | Hilfen | Artikel | Weblinks | Literatur | Zitate | Notizen | Programmierung | MSCert | Physik |
Root Finding AlgorithmnsBearbeiten
Bisection MethodBearbeitenAlgorithm let rec bisect n N (f:float -> float) (a:float) (b:float) (t:float) : float =
if n >= N
then -1.0
else
let c = (a + b / 2)
if f(c) = 0.0 || (b - a) / 2.0 < t then
c // solution
else if sign(f(c)) = sign(f(a)) then
bisect (n+1) N f c b t
else
bisect (n+1) N f a c t
use // define function
let f = (fun x -> (x**2.0 - x - 6))
let firstRoot = bisect 0 25 f 0.0 10.0 0.01
let secondRoot = bisect 0 25 f -10.0 0.0 0.01
// n ... iteration start
// N ... max iteration
// f ... function to solve
// fprime ... first derivate of f
// x0 ... start value for x
// tol ... step size
let rec newtonRapson n N (f:float -> float) (fprime:float -> float) (x0:float) (tol:float) : float =
if n >= N
then
-1.0
else
let d = fprime x0
let newtonX = x0 - f(x0) / d
if abs(d) < tol
then
-1.0
else if abs(newtonX - x0) < tol
then
newtonX
else
newtonRapson (n+1) N f fprime newtonX tol
Secant MethodBearbeitenlet rec secant n N (f:float -> float) (x0:float) (x1:float) : float =
if n >= N
then
x0
else
let x = x1 - f(x1) * (x1 - x0) / (f(x1) - f(x0))
secant (n + 1) N f x x0
|