Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit
Belegen (beispielsweise
Einzelnachweisen) ausgestattet. Angaben ohne ausreichenden Beleg könnten demnächst entfernt werden. Bitte hilf Wikipedia, indem du die Angaben recherchierst und
gute Belege einfügst.
Biorthogonalität ist eine Abwandlung der bekannten Orthogonalität. Man spricht von biorthogonalen Matrizen und , wenn die Spaltenvektoren aufeinander senkrecht stehen, , wobei eine Diagonalmatrix bezeichnet.
Die Matrizen sind biorthonormal, wenn die Diagonalmatrix die Identität ist, also wenn . Die Definitionen für Orthogonalität und Orthonormalität erhält man, indem man wählt.
Biorthogonalität tritt im Kontext vom unsymmetrischen Lanczos-Verfahren und beim zweiseitigen Gram-Schmidt auf.