Diskussion:Neyman-Pearson-Lemma

Letzter Kommentar: vor 1 Jahr von Sigma^2 in Abschnitt Unsignierte Kritik

Unsignierte Kritik

Bearbeiten

Das englische Original ist wenigstens richtig. Dies ist von jemand aus der englischen Wikipedia ins Deutsche übertragen und verstümmelt, der von statistischer Testtheorie keine Ahnung hat, z. B. nicht weiß, was ein gleichmäßig bester Test (uniformly most powerful test) ist und daß man in der Neyman-Pearson-Testtheorie die Hypothesen nicht symmetrisch behandelt. Besser kein Artikel als so etwas in einer Enzyklopädie.

Vielleicht sollten hier auch Verbesserungsvorschläge und nicht nur Kritik gepostet werden. Außerdem sollte jeder Beitrag signiert werden. -- Bad.farmer 15:00, 26. Aug. 2009 (CEST)Beantworten
So, ich habe den Artikel nun vollständig überarbeitet, damit mir hier keine weiteren Klagen mehr kommen :) Weitere Verbesserungen sind natürlich immer willkommen! Wenn ich dazu komme, werde ich auch noch ein Beispiel hinzufügen. -- Bad.farmer 21:48, 11. Sep. 2009 (CEST)Beantworten
Verbesserungsvorschläge: Die Kernaussagen des Neyman-Pearson-Lemmas, nämlich (a) die Existenz eines Tests, der nicht nur ein Niveau-α-Test, sondern ein Umfang-α-Test ist und (b) die Aussage, dass dieser Test ein gleichmäßig bester Test ist, sollten im Artikel vorkommen. Eher vage Formulierungen (stärkster Test, optimaler Test) ohne Beleg oder Link auf die Terminologie statistischer Tests sollten überarbeitet werden. Es erfolgt eine (zu enge) Beschränkung auf Verteilungen mit Dichtefunktionen, später ist dann aber von diskreten Modellen die Rede, das ist verbesserungsfähig.--Sigma^2 (Diskussion) 11:27, 18. Feb. 2023 (CET)Beantworten

Anwendung

Bearbeiten

Mir wird durch den Artikel nicht klar, wofür das Neyman-Pearson-Lemma verwendet wird und was die besondere Bedeutung ist. Gruß --Zulu55 20:39, 8. Aug. 2010 (CEST)Beantworten

Das Neyman-Pearson-Lemma hilft bei der Konstruktion von Hypothesentests. Angenommen du beobachtest eine Zufallsgröße  , von der du weißt, dass sie normalverteilt ist mit Erwartungswert 0 oder 2. Auf Grund einer Realisation von   möchtest du die Hypothese " " verwerfen. In dem Fall ist der Likelihoodquotient  , wobei   die Dichte der Standardnormalverteilung und   die Dichte der Normalverteilung mit Erwartungswert 2 ist, monoton fallend. Damit ist der Verwerfungsbereich   von der Form   für ein passendes  . Gegeben ein Signifikanzniveau   ist   gerade das  -Quantil der Standardnormalverteilung, denn dann folgt
 
Für das Signifikanzniveau   ist bspw.   und entsprechend  , d.h. ist die Beobachtung von   größer oder gleich 1.645, so verwirft man die Nullhypothese.
Das besondere am Neyman-Pearson-Lemma ist, dass es besagt, dass der oben konstruierte Test unter den Tests zum Signifikanzniveau   auch schon stärkster Test für die Entscheidung zwischen den Normalverteilungen ist, d.h. auch wenn ich die Hypothese nicht verwerfe, so liege ich mit dieser Entscheidung mit nur minimaler Wahrscheinlichkeit falsch. --Bad.farmer 09:11, 14. Aug. 2010 (CEST)Beantworten

Literatur

Bearbeiten

Bewersdorff (2011) ist ungeeignet als Quelle für die hier präsentierte Version des Neyman-Pearson-Lemmas. Dort (S. 199–200) gibt es nur Wahrscheinlichkeiten, aber keine Dichtefunktionen.--Sigma^2 (Diskussion) 10:55, 18. Feb. 2023 (CET)Beantworten