Doppeloperatorintegral

Integrale in der Funktionalanalysis und der Störungstheorie

Doppeloperatorintegrale (DOI, englisch Double Operator Integrals) sind in der Funktionalanalysis und der Störungstheorie Integrale der Form

wobei ein beschränkter linearer Operator zwischen zwei separablen Hilberträumen ist,

zwei Spektralmaße sind, wobei hier für die Menge der orthogonalen Projektionen über steht, und eine messbare skalarwertige Funktion ist, welche Symbol des DOI genannt wird. Die Integrale sind hier in Form von Stieltjes-Integralen zu verstehen.

DOI tauchten das erste Mal 1956 in einer Arbeit von Yuri L. Daletskii und Selim G. Krein auf, welche zwei selbstadjungierte Operatoren und auf Hilberträumen untersuchten (wobei die Perturbation von ist) und die Ableitung für bestimmte operatorwertige Funktionen

in folgender Form

fanden, wobei hier das Spektralmaß von ist.[1] Die Theorie der Doppeloperatorintegrale wurde im Wesentlichen von Michail Schljomowitsch Birman und Mikhail Zakharovich Solomyak in den späten 1960ern und 1970ern entwickelt.[2][3] DOI können verwendet werden, um Normen von Operatoren-Differenzen

für operator-lipschitzstetige Funktionen abzuschätzen und sind dadurch wichtig in der Störungstheorie.

DOI sind Spezialfälle der Multipleoperatorintegralen[4]

Doppeloperatorintegral

Bearbeiten

Die Definition des Integrales induziert direkt eine weitere Abbildung

 

welche Transformator genannt wird.

Wie sich herausstellt, hängt die Definition solcher DOI sowie die Klasse der zulässigen Symbolen   von der Wahl der betrachteten Operatorenräumen ab. In der ursprünglichen Betrachtung von Birman-Solomyak wurde der Operator   auf die Klasse der Hilbert-Schmidt-Operatoren   eingeschränkt. Die Definition kann aber auf weitere Schatten-von-Neumann-Klassen respektive auf allgemeine beschränkte Operatoren   erweitert werden, so lange   auch beschränkt bleibt.

Birman-Solomyak definierten nun folgendes Spektralproduktmaß   durch

 

für messbare Mengen  , wo durch   durch

 

für beschränkte und messbare Funktionen   definiert werden kann.

Anwendungsbeispiel aus der Störungstheorie

Bearbeiten

Wir betrachten nur einen Hilbertraum   und zwei beschränkte, selbstadjungierte Operatoren   auf  . Sei nun   und   eine Funktion auf einer Menge, die die Spektra von   enthält. Weiter sei   der Transformator und   der Identitätsoperator. Es gilt nach dem Spektralsatz   und   und  , daraus folgt

 

und somit

 [5][6]

Literatur

Bearbeiten
  • M. S. Birman und M. Z. Solomyak: Double Stieltjes operator integrals. In: Consultants Bureau Plenum Publishing Corporation (Hrsg.): Topics of Math. Physics. Band 1, 1967, S. 25–54.
  • M. S. Birman und M. Z. Solomyak: Double Stieltjes operator integrals. II. In: Consultants Bureau Plenum Publishing Corporation (Hrsg.): Topics of Math. Physics. Band 2, 1968, S. 19–46.
  • Vladimir V. Peller: Multiple operator integrals in perturbation theory. In: Bull. Math. Sci. Band 6, 2016, S. 15–88, doi:10.1007/s13373-015-0073-y.
  • M. S. Birman und M. Solomyak: Lectures on Double Operator Integrals. 2002 (a mini-course given by the authors at the Mittag-Leffler Institute).

Einzelnachweise

Bearbeiten
  1. Y.L.Daletskii und S.G. Krein: Integration and differentiation of functions of Hermitian operators and application to the theory of perturbations. In: Staatliche Universität Woronesch (Hrsg.): Trudy Sem. po Funktsion. Analizu. Band 1, 1956, S. 81–105 (russisch).
  2. M. S. Birman und M. Z. Solomyak: Double Stieltjes operator integrals. In: Consultants Bureau Plenum Publishing Corporation (Hrsg.): Topics of Math. Physics. Band 1, 1967, S. 25–54.
  3. M. S. Birman und M. Z. Solomyak: Double Stieltjes operator integrals. II. In: Consultants Bureau Plenum Publishing Corporation (Hrsg.): Topics of Math. Physics. Band 2, 1968, S. 19–46.
  4. Vladimir V. Peller: Multiple operator integrals in perturbation theory. In: Bull. Math. Sci. Band 6, 2016, S. 15–88, doi:10.1007/s13373-015-0073-y.
  5. M. S. Birman und M. Solomyak: Double Operator Integrals in a Hilbert Space. In: Integr. equ. oper. theory. Band 47, 2003, S. 136–137, doi:10.1007/s00020-003-1157-8.
  6. M. S. Birman und M. Solomyak: Lectures on Double Operator Integrals. 2002 (a mini-course given by the authors at the Mittag-Leffler Institute).