Unter einer einsamen Zahl (englisch solitary number) versteht man in dem mathematischen Teilgebiet der Zahlentheorie eine natürliche Zahl, welche keine andere natürliche Zahl als Bekannte hat. Dabei gelten zwei natürliche Zahlen als Bekannte oder als miteinander bekannt, wenn für beide die aus der Teilersumme der Zahl und der Zahl selbst gebildeten Quotienten identisch sind. Zu den einsamen Zahlen gehören unter anderem alle Primzahlen.[1][2][3][4]

Definition

Bearbeiten

Eine natürliche Zahl   heißt einsame Zahl (oder kurz: einsam) dann und nur dann, wenn gilt:

 

Es ist   dabei die Teilersumme von  , also die Summe aller Teiler von  .

Beispiele und Anmerkungen

Bearbeiten
  • Jede natürliche Zahl  , welche mit ihrer Teilersumme   außer der   keinen Teiler gemeinsam hat, für die also Teilersumme   und die Zahl   selbst teilerfremd sind, ist eine einsame Zahl. Daher gehören zu den einsamen Zahlen alle Primzahlen und sogar allgemein alle Primzahlpotenzen.[5]
  • Keine vollkommene Zahl   ist einsam, da für sie stets   gilt, weswegen alle vollkommenen Zahlen miteinander bekannt sind.[1]
  • Zu den natürlichen Zahlen, welche bewiesenermaßen einsam sind, ohne dass sie und ihre Teilersumme teilerfremd sind, gehören neben anderen die Zahlen  .[6]
  • Es existieren unterhalb   mindestens   einsame Zahlen.[2]
  • Der Nachweis, dass eine natürliche Zahl eine Bekannte besitzt und daher keine einsame Zahl sein kann, ist selbst für kleine natürliche Zahlen nicht selten außerordentlich aufwändig. So hat beispielsweise die Zahl   als kleinste Bekannte die Zahl  .[1]

Vermutungen

Bearbeiten

Es besteht die bislang unbewiesene Vermutung, dass die folgenden Zahlen einsam sind:[1][6]

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  

Ein weiteres offenes Problem ist die Frage, ob es unendliche Mengen gegenseitig bekannter Zahlen gibt. Ein möglicher Kandidat ist die Menge der vollkommenen Zahlen.

Literatur

Bearbeiten

Einzelnachweise

Bearbeiten
  1. a b c d Neunhäuserer: S. 186–187.
  2. a b Sándor-Crstici: S. 70–71.
  3. In der englischsprachigen Fachliteratur werden zwei verschiedene miteinander bekannte Zahlen als friendly pair bezeichnet.
  4. Miteinander bekannte Zahlen sind zu unterscheiden von den befreundeten Zahlen.
  5. Der Beweis dessen geht auf M. G. Greening zurück. Vgl. Anderson-Hickerson-Greening: Amer.Math.Monthly. S. 65–66.
  6. a b Folge A095739 in OEIS