Grad (Graphentheorie)

Eigenschaft eines Knotens in der Graphentheorie

Grad (auch Knotengrad oder Valenz) ist ein grundlegender Begriff der Graphentheorie, eines Teilgebiets der Mathematik. Der Grad eines Knotens ist die Anzahl von Kanten, die an ihn angrenzen.

Definition

Bearbeiten

Ungerichtete Graphen

Bearbeiten
 
Ein ungerichteter Graph. Die Knoten sind mit ihrem Grad beschriftet.

In einem ungerichteten Graphen   ist für jeden Knoten   der Grad   definiert als die Anzahl aller Kanten von  , die an   angrenzen. Sofern vorhanden werden Schlingen dabei doppelt gezählt.

Statt   wird oft auch die Notation   verwendet. Der Index   kann weggelassen werden, falls klar ist, um welchen Graphen es sich handelt.

Den kleinsten Grad eines Knotens in   nennt man den Minimalgrad von   und bezeichnet diesen mit  , den größten Grad eines Knotens in   nennt man den Maximalgrad von  , dieser wird meist mit   bezeichnet. Der Durchschnitt aller Knotengrade von   wird Durchschnittsgrad genannt und mit   bezeichnet.

Gerichtete Graphen

Bearbeiten
 
Ein gerichteter Graph mit beschrifteten Knoten: (Eingangsgrad, Ausgangsgrad)

In einem gerichteten Graphen   wird unterschieden, ob eine Kante an einem Knoten beginnt oder endet. Mit   bezeichnet man den Eingangsgrad des Knotens   in einem gerichteten Graphen   und mit   dessen Ausgangsgrad.

Dabei ist   die Anzahl aller Kanten, die in   enden und   die Anzahl aller Kanten, die in   starten.

Einen Knoten ohne Eingangskanten ( ) nennt man Quelle, einen Knoten ohne Ausgangskanten ( ) nennt man Senke.

Verwandte Begriffe

Bearbeiten
  • Man nennt einen Knoten isoliert, wenn er:
  • Ein ungerichteter Graph oder Hypergraph   heißt regulär, falls alle seine Knoten denselben Grad besitzen. Besitzen alle seine Knoten Grad  , so bezeichnet man   als k-regulär. Einen 3-regulären Graphen bezeichnet man auch als kubisch.
  • Ein gerichteter Graph   heißt regulär, falls alle seine Knoten denselben Eingangs- und Ausgangsgrad besitzen. Besitzen alle seine Knoten Eingangs- und Ausgangsgrad  , so bezeichnet man   als k-regulär.
  • Ein Hypergraph   heißt uniform, wenn alle Kanten von   die gleiche Anzahl Knoten enthalten. Enthalten alle Kanten von   genau   Knoten, so nennt man   k-uniform.

Eigenschaften

Bearbeiten
  • Stets gilt  . Gleichheit tritt z. B. bei vollständigen Graphen, allgemein bei regulären Graphen ein.
  • Es gilt  , wobei   die Anzahl der Kanten des Graphen bezeichnet. Da die Summe der Knotengrade also stets gerade ist, ist auch die Anzahl der Knoten mit ungeradem Grad stets gerade.

Planare Graphen

Bearbeiten

Zusammenhängende planare Graphen mit   Knoten,   Kanten und   Flächen erfüllen die Ungleichung  , weil jede Fläche benachbart zu mindestens drei Kanten und jede Kante genau zwei Flächen begrenzt. Daraus und aus der Gleichung   (Eulerscher Polyedersatz) folgt   und daraus folgt für den durchschnittlichen Knotengrad

 

Das heißt, dass für endliche planare Graphen der durchschnittliche Knotengrad kleiner als 6 ist. Graphen mit höherem durchschnittlichen Knotengrad können nicht planar sein.

Verwendung

Bearbeiten

Der Grad gehört zu den Grundbegriffen der Graphentheorie und liefert viele wichtige Abschätzungen für Grapheneigenschaften wie z. B. die Kantenfärbungszahl.

Programmierung

Bearbeiten

Das folgende Beispiel in der Programmiersprache C# zeigt die Implementierung eines ungerichteten Graphen mit Adjazenzlisten. Der ungerichtete Graph wird als Klasse UndirectedGraph deklariert. Bei der Ausführung des Programms wird die Methode Main verwendet, die den Minimalgrad, den Maximalgrad und die entsprechenden Knoten des Graphen auf der Konsole ausgibt.[1]

using System;
using System.Collections.Generic;

// Deklariert die Klasse für die Knoten des Graphen
class Node
{
	public int index;
	public string value;
	public HashSet<Node> adjacentNodes = new HashSet<Node>(); // Menge der Nachbarknoten
}

// Deklariert die Klasse für den ungerichteten Graphen
class UndirectedGraph
{
	public HashSet<Node> nodes = new HashSet<Node>();
	
	// Diese Methode verbindet die Knoten node1 und node2 miteinander.
	public void ConnectNodes(Node node1, Node node2)
	{
		node1.adjacentNodes.Add(node2);
		node2.adjacentNodes.Add(node1);
	}
}

class Program
{
	// Diese Methode gibt die Knoten in der Form A, B, C, ... als Text zurück.
	public static string ToString(HashSet<Node> nodes)
	{
		string text = "";
		foreach (Node node in nodes) // foreach-Schleife, die alle Knoten der Komponente durchläuft
		{
			text += node.value + ", ";
		}
		text = text.Substring(0, text.Length - 2);
		return text;
	}
	
	// Hauptmethode, die das Programm ausführt
	public static void Main(string[] args)
	{
		// Deklariert und initialisiert 5 Knoten
		Node node1 = new Node{index = 0, value = "A"};
		Node node2 = new Node{index = 1, value = "B"};
		Node node3 = new Node{index = 2, value = "C"};
		Node node4 = new Node{index = 3, value = "D"};
		Node node5 = new Node{index = 4, value = "E"};
		// Deklariert und initialisiert ein Array mit den Knoten
		Node[] nodes = {node1, node2, node3, node4, node5};
		// Erzeugt einen ungerichteten Graphen
		UndirectedGraph undirectedGraph = new UndirectedGraph();
		int numberOfNodes = nodes.Length;
		for (int i = 0; i < numberOfNodes; i++) // for-Schleife, die alle Knoten durchläuft
		{
			undirectedGraph.nodes.Add(nodes[i]); // Fügt die Knoten dem Graphen hinzu
		}
		// Verbindet Knoten des Graphen miteinander
		undirectedGraph.ConnectNodes(node1, node2);
		undirectedGraph.ConnectNodes(node3, node4);
		undirectedGraph.ConnectNodes(node4, node5);
		
		int minimumDegree = numberOfNodes;
		HashSet<Node> nodesWithMinimumDegree = new HashSet<Node>();
		int maximumDegree = 0;
		HashSet<Node> nodesWithMaximumDegree = new HashSet<Node>();
		for (int i = 0; i < numberOfNodes; i++) // for-Schleife, die alle Knoten durchläuft
		{
			// Bestimmt den Minimalgrad und den Maximalgrad und die entsprechenden Knoten des Graphen
			Node node = nodes[i];
			int degree = node.adjacentNodes.Count; // Knotengrad = Anzahl der Nachbarknoten
			if (degree < minimumDegree)
			{
				minimumDegree = degree;
				nodesWithMinimumDegree.Clear();
				nodesWithMinimumDegree.Add(node);
			}
			if (degree == minimumDegree)
			{
				nodesWithMinimumDegree.Add(node);
			}
			if (degree > maximumDegree)
			{
				maximumDegree = degree;
				nodesWithMaximumDegree.Clear();
				nodesWithMaximumDegree.Add(node);
			}
			if (degree == maximumDegree)
			{
				nodesWithMaximumDegree.Add(node);
			}
		}
		Console.WriteLine("Minimalgrad: " + minimumDegree); // Ausgabe auf der Konsole
		Console.WriteLine("Knoten mit Minimalgrad: " + ToString(nodesWithMinimumDegree)); // Ausgabe auf der Konsole
		Console.WriteLine("Maximalgrad: " + maximumDegree); // Ausgabe auf der Konsole
		Console.WriteLine("Knoten mit Maximalgrad: " + ToString(nodesWithMaximumDegree)); // Ausgabe auf der Konsole
		
		Console.ReadLine();
	}
}

Literatur

Bearbeiten

Einzelnachweise

Bearbeiten
  1. GeeksforGeeks: Print nodes having maximum and minimum degrees