Die beiden Hardy-Littlewood-Vermutungen sind unbewiesene mathematische Vermutungen aus dem Bereich der Zahlentheorie. Sie wurden von den beiden englischen Mathematikern Godfrey Harold Hardy und John Edensor Littlewood aufgestellt und im Jahre 1923 im Werk “Some Problems of ‘Partitio Numerorum.’ III. On the Expression of a Number as a Sum of Primes.” veröffentlicht.[1]

Im Jahre 1974 gelang es Ian Richards aufzuzeigen, dass die beiden Hardy-Littlewood-Vermutungen inkompatibel zueinander sind. Das bedeutet, sie können nicht beide korrekt sein, sondern höchstens eine.[2]

Erste Hardy-Littlewood-Vermutung

Bearbeiten

Die erste Hardy-Littlewood-Vermutung wird auch k-Tupel-Vermutung oder starke Primzahlzwillingsvermutung genannt. Letzteres hat den Grund, dass durch das Beweisen der ersten Hardy-Littlewood-Vermutung unter anderem auch die Primzahlzwillingsvermutung – nach der unendlich viele Primzahlzwillinge existieren – bewiesen wird. Sie besagt, es existieren unendlich viele Primzahltupel zu allen korrekten (und nicht notwendigerweise dichtesten) Konfigurationen und gibt eine explizite Funktion für die Dichte dieser an.[3][4] Mit einer Konfiguration eines Primzahltupels werden die Differenzen zwischen den Tupelelementen beschrieben. So ist beispielsweise   eine mögliche korrekte Konfiguration eines primen 2-Tupels (auch bekannt als Primzahlzwilling). Damit eine Konfiguration als korrekt gilt, dürfen nicht alle möglichen Reste bezüglich jeder Primzahl   im Tupel vorkommen (→ Primzahltupel). Die dichtesten Konfigurationen werden auch Konstellationen genannt.

Sei im Weiteren   die Funktion, die zu einer beliebigen Zahl die Menge aller Primzahlen kleinergleich dieser Zahl angibt. Formal:

 

Wobei die eckigen Klammern   für ein abgeschlossenes Intervall stehen und wobei   für die Menge aller Primzahlen steht. Sei   die Primzahlfunktion, sie gibt also die Anzahl der Primzahlen an, die kleiner oder gleich sind wie ihr Funktionsargument. Diese lässt sich dank der Definition der Funktion   einfach formalisieren:

 

Nun kann für beliebige korrekte Konfigurationen   der Größe   eine Konstante   eingeführt werden, die durch das folgende konvergente unendliche Produkt definiert ist:

 

Wobei   die Anzahl unterschiedlicher Reste von   bezüglich des Teilers   bezeichnet. Formal:

 

Die Zahl   wird auch Primzahlzwillingskonstante bezeichnet. (Folge A005597 in OEIS)

 

Für Primzahlpaare ( ) mit beliebiger Differenz   existiert für die Konstante   die folgende Formel:

 

Wobei   für die Teilbarkeitsrelation steht.

Für   hat sich der oben erwähnte Wert von etwa 0,66016 etabliert. Es ist hierbei zu unterscheiden, dass   mit   und folglich   doppelt so groß ist wie  , weswegen es für die Vermutung zum asymptotischen Verhalten auch zwei unterschiedliche Formeln gibt.

Interessanterweise ist die Konstante   für unterschiedliche Konfigurationenen gleicher Größe nicht notwendigerweise gleich. Das kleinste Gegenbeispiel ist eine Konstellation der Größe 8.[5]

Es lässt sich nun auch die Primzahlfunktion   um den Index   erweitern, sodass   die Anzahl aller Primzahltupel bezeichnet, die von der Form   sind und deren Komponenten nicht größer als das Funktionsargument sind. Als Beispiel sei   genannt, denn bis 9 gibt es die Primzahlzwillinge   und  .

Primzahlzwillingsvermutung

Bearbeiten

Mit der ersten Hardy-Littlewood-Vermutung wird nun behauptet, es gälte das asymptotische Verhalten

 

was sich auch wie folgt als Grenzwert formalisieren lässt:

 

k-Tupelvermutung

Bearbeiten

Auf beliebige Konfigurationen   verallgemeinert lautet die Vermutung

 

was sich auf analoge Weise zu einem Grenzwert umformen lässt. Die Funktion   nennt man Singular-Reihe.

Da die Anzahl der Primzahlen   laut dem Primzahlsatz asymptotisch äquivalent zu   ist – es gilt also   –, so scheint die Vermutung durchaus plausibel, und auch numerisch lässt sich die asymptotische Form gut bestätigen, was jedoch nicht hinreichend für einen Beweis ist.

Zweite Hardy-Littlewood-Vermutung

Bearbeiten

Die zweite Hardy-Littlewood-Vermutung trifft die Aussage über die Anzahl der Primzahlen in einem Intervall. Genauer geht es um die folgende Ungleichung:

 

Wobei   erneut die Primzahlfunktion ist, also die Anzahl der Primzahlen angibt.

Im Allgemeinen wird davon ausgegangen, dass diese Vermutung falsch ist, da sie – wie anfangs erwähnt – nicht kompatibel zur plausibleren ersten Hardy-Littlewood-Vermutung ist.[1]

Der Fall für   ist trivial. Die Primzahlfunktion wächst langsamer als linear, formal lässt sich also sagen, dass   gilt, wobei   die identische Abbildung ist. Siehe Landau-Symbole für die o-Notation. Folglich muss also die Ungleichung   für   gelten.

Als Beispielwerte für  , für welche die Gleichung   gilt, seien konkret   genannt. Allgemein erfüllen alle Paare   bzw.   die Gleichung, bei welchen   das kleinere Element eines Primzahlzwillingspaares ist.

Analog dazu gilt die Ungleichung   für alle   bzw.  , bei denen   nicht das kleinere Element eines Primzahlzwillingspaares ist. Ein Beispiel ist  , denn   ist kein Primzahlzwillingspaar, da 9 nicht prim ist.

Bearbeiten

Einzelnachweise

Bearbeiten
  1. a b "Hardy-Littlewood Conjectures -- from Wolfram MathWorld". Abgerufen am 12. Juni 2014.
  2. "On the incompatibility of two conjectures concerning primes; a discussion of the use of computers in attacking a theoretical problem". Abgerufen am 12. Juni 2014.
  3. "k-Tuple Conjecture -- from Wolfram MathWorld". Abgerufen am 12. Juni 2014.
  4. "The Prime Glossary: prime k-tuple conjecture". Abgerufen am 12. Juni 2014.
  5. "Hardy-Littlewood constants". Abgerufen am 12. Juni 2014.