Varianz

Maß für die Streuung von einer endlichen Anzahl von reellen Werten um ihren Mittelwert
(Weitergeleitet von Induktive Varianz)

Die Varianz (von lateinisch variantia „Verschiedenheit“ bzw. variare „[ver]ändern, verschieden sein“) ist ein Begriff der Wahrscheinlichkeitsrechnung. Sie ist ein Maß für die Streuung reeller Werte um einen Mittel-, bzw. Erwartungswert. (Die Streuung um einen Erwartungswert stellt dabei die allgemeinere Betrachtungsweise dar. Die Streuung erfasster Werte um ihr arithmetisches Mittel ist dem gegenüber ein Spezialfall und wird hier als empirische Varianz bezeichnet.) Die Varianz wird berechnet, indem das mittlere Abweichungsquadrat aller Werte gebildet wird. Die Quadratwurzel aus der Varianz ergibt die Standardabweichung, ebenfalls ein Streuungsmaß.

Formelzeichen
Mittelwert der Grundgesamtheit
Varianz der Grundgesamtheit
Anzahl der gegebenen Werte
Zufallsvariablen (Zufallsgrößen)
Stichprobe: beobachtete Werte der Zufallsvariablen
Stichprobenmittel / empirischer Mittelwert von
Stichprobenvarianz / empirische Varianz von
Stichprobenmittel (als Funktion der Zufallsvariablen)
Stichprobenvarianz (als Funktion der Zufallsvariablen)
Erwartungswert: Mittelwert, der sich aus der Verteilungsfunktion von ergibt
Varianz (Stochastik): Varianz, die sich aus der Verteilungsfunktion von ergibt

Die Standardabweichung ist oft anschaulicher als die Varianz, da sie dieselbe Größenordnung hat wie die beobachteten Werte. Die Varianz ist dafür in weitergehenden Berechnungen oft praktischer: So können beispielsweise Varianzbeiträge von mehreren unabhängigen Zufallseinflüssen einfach addiert werden, und umgekehrt lässt sich durch eine Varianzanalyse eine Gesamtvarianz oft auch in ihre Beiträge (Ursachen) zerlegen.

Eigenschaften

Bearbeiten

Die Quadrierung der Abweichungen vom Mittelwert bewirkt bei einer endlichen Anzahl reeller Stichprobenwerte:

  • Positive und negative Abweichungen vom Mittelwert heben sich nicht gegenseitig auf.
  • Die Varianz einer Stichprobe ist immer positiv (oder Null, falls alle Stichprobenwerte identisch sind).
  • Eine größere Varianz entspricht einer größeren Unterschiedlichkeit der Werte.
  • Wenige aber starke Ausreißer haben einen großen Einfluss auf das Ergebnis.

Quellen der untersuchten Werte

Bearbeiten

In der beschreibenden Statistik wird von empirische Varianz (d. h. „aus konkreten Daten berechnete“ Varianz) geredet. Die konkreten Daten ergeben sich häufig als Stichprobe aus einer Gesamtheit aller Daten (Population, Grundgesamtheit). Das führt zur alternativen Bezeichnung als Stichprobenvarianz.

Die Varianz wird in der Stochastik mathematisch allgemeiner behandelt (siehe Varianz (Stochastik)); die empirische Varianz ist also nur ein Spezialfall: Sie basiert in der mathematischen Statistik auf Zufallsvariablen, also auf Funktionen, die dem Ergebnis eines Zufallsexperiments eine Größe zuordnen. Die Zufallsvariablen sind nicht begrenzt auf reelle Werte, und die Anzahl der Werte zur Berechnung der Varianz kann auch unendlich sein. In der mathematischen Statistik ist die Varianz die erwartete quadratische Abweichung von Zufallsvariablen von ihrem Erwartungswert.[1][2][3] Sie wird daher zur Abgrenzung auch als theoretische Varianz bezeichnet.

Durch die Verallgemeinerung können besondere Fälle auftreten:

  • Es gibt Zufallsvariablen, die auf Wahrscheinlichkeitsverteilungen basieren, für die die Varianz nicht definiert ist (z. B. Cauchy-Verteilung).
  • Eine Varianz von Null zeigt nicht unbedingt an, dass alle Zufallsvariablen identische Werte haben.

Die Varianz wird in der Stochastik aus der Verteilung der Zufallsvariablen oder mit Hilfe von Schätzfunktionen bestimmt (siehe Stichprobenvarianz (Schätzfunktion)).

Empirische Varianz

Bearbeiten

Ausgangspunkt ist eine Stichprobe mit reellen Werten, die aus einer Grundgesamtheit ausgewählt (empirisch erhoben) wurden. Wir sprechen daher im Folgenden auch von der „Stichprobenvarianz“. Im Grenzfall umfasst die Stichprobe die gesamte Grundgesamtheit.

Die empirische Varianz ist ein Spezialfall der Varianz in der mathematischen Statistik.

Stichprobe als Teilmenge einer Grundgesamtheit

Bearbeiten

Zur Ermittlung der Stichprobenvarianz werden zunächst die Abweichungen der beobachteten reellen Werte   der Stichprobe von ihrem arithmetischen Mittel   gebildet. Summierung ergibt die sogenannte Abweichungsquadratsumme  .

Wenn die Abweichungsquadratsumme durch   dividiert wird, erhält man das mittlere Abweichungsquadrat bzw. die korrigierte Stichprobenvarianz oder korrigierte empirische Varianz:

  
 
 (1)
 

Falls keine Verwechslungsgefahr mit Formel (2) besteht, wird oft auch nur die kürzere Bezeichnung Stichprobenvarianz oder empirische Varianz verwendet[4][5]. Der Vorsatz „korrigierte …“ in der ausführlichen Bezeichnung bezieht sich auf den Faktor  , der auch als Bessel-Korrektur bezeichnet wird.[5]

Die Idee dieser Formel (1) ist es, eine Aussage über die erwartete Varianz der Gesamtheit aller Daten zu machen: Die Stichprobe wird verwendet, um die Varianz der Grundgesamtheit zu schätzen. Formel (1) stellt einen erwartungstreuen Schätzer dar. Das bedeutet in diesem Fall, dass der Schätzfehler immer kleiner wird und gegen Null strebt, wenn das Ergebnis über eine steigende Anzahl von Stichproben gemittelt wird. Diese Eigenschaft von Formel (1) lässt sich in der mathematischen Statistik beweisen.

Wenn die Abweichungsquadratsumme nur durch   dividiert wird, erhält man die unkorrigierte Stichprobenvarianz

  
 
 (2)
 

Die Idee dieser Formel (2) ist es, den Datensatz möglichst genau durch eine Normalverteilung zu beschreiben: Die Parameter der Normalverteilung   und   werden so bestimmt, dass der quadratische Fehler der gegebenen Daten relativ zur Verteilungsfunktion der Normalverteilung minimal ist.[6] Das ist der Fall für   und  . Formel (2) liefert in diesem Sinne bessere Ergebnisse als Formel (1). Allerdings ist Formel (2) kein erwartungstreuer Schätzer, denn wenn das Ergebnis über viele Stichproben gemittelt wird, dann strebt das Ergebnis nicht gegen den wahren Wert für die Varianz der Grundgesamtheit. Formel (2) liefert im Mittel zu kleine Ergebnisse und wird daher seltener angewendet. Formel (2) wird in der mathematischen Statistik begründet, z. B. durch Anwendung der Maximum-Likelihood-Methode, oder der Momentenmethode.

Für den Sonderfall, dass der Mittelwert der Grundgesamtheit   bekannt ist, wird die Varianz mit folgender Formel berechnet:

  
 
 (3)
 

Formel (3) und (1) unterscheiden sich darin, dass bei Formel (3) die Berechnung des arithmetischen Mittels entfällt, weil der Mittelwert der Grundgesamtheit bekannt ist. Auch diese Formel ist erwartungstreu im Sinne der mathematischen Statistik.

Die Verwendung und Abgrenzung der Bezeichnungen „Stichprobenvarianz“ und „empirische Varianz“ ist in der Literatur nicht einheitlich: Einige Autoren[7] bezeichnen Formel (1) als Stichprobenvarianz und Formel (2) als empirische Varianz.

Stichprobe beinhaltet alle Werte der Grundgesamtheit

Bearbeiten

Für den Sonderfall, dass die Stichprobe alle   Werte der Grundgesamtheit beinhaltet ( ), nennt man sie auch Vollerhebung. Der wahre Mittelwert der Grundgesamtheit   fällt mit dem arithmetischen Mittel   zusammen ( ) und berechnet sich aus allen Elementen der Grundgesamtheit als

  
 
 (4)
 

Als Konsequenz fallen auch   und   zusammen. Die Varianz der Grundgesamtheit (auch Populationsvarianz genannt) ist dann gleich der Stichprobenvarianz und wird berechnet durch

  
 
 (5)
 

Varianz in der mathematischen Statistik

Bearbeiten

Die Varianz ist mathematisch allgemein folgendermaßen definiert:

Sei   ein Wahrscheinlichkeitsraum und   eine Zufallsvariable auf eine Menge  , mit der Ergebnismenge  , dem Ereignissystem   und dem Wahrscheinlichkeitsmaß  . Mit   bezeichnen wir den Erwartungswert der Zufallsvariable, sofern dieser existiert. Die Varianz ist dann definiert als erwartete mittlere quadratische Abweichung der Zufallsvariable von ihrem Erwartungswert:

  
 
 (6)
 

Berechnung basierend auf der Wahrscheinlichkeitsverteilung

Bearbeiten

Nicht jede Wahrscheinlichkeitsverteilung besitzt einen Erwartungswert und eine Varianz (z. B. Cauchy-Verteilung). Und damit ist nicht für jede Zufallsvariable die Varianz definiert.

Es wird unterschieden zwischen stetigen und diskreten Zufallsvariablen:

Stetige Zufallsvariablen

Bearbeiten

Falls die stetige Zufallsvariable   auf einer Menge   eine Wahrscheinlichkeitsdichtefunktion   besitzt, dann lässt sich der Erwartungswert und die Varianz wie folgt berechnen:[8]

  
 
 (7)
 
  
 
 (8)
 

Diskrete Zufallsvariablen

Bearbeiten

Sei   eine diskrete Zufallsvariable auf einer Menge   mit Wahrscheinlichkeitsfunktion  . Dann lässt sich der Erwartungswert und die Varianz wie folgt berechnen:

  
 
 (9)
 
  
 
 (10)
 

Berechnung basierend auf Stichprobenvariablen

Bearbeiten

Für diesen Fall werden in Formel (1)–(3) die Stichprobenwerte   durch die Stichprobenvariablen   ersetzt. Die Stichprobenvariablen sind keine reellen Werte, sondern sie sind Zufallsvariablen: Jede Zufallsvariable   beschreibt die Wahrscheinlichkeit, mit der mögliche Beobachtungswerte   auftreten.

Dies führt zur mathematisch allgemeineren Darstellung der Varianz als Funktion (genauer Stichprobenfunktion) von verschiedenen Zufallsvariablen. Auch hier unterscheidet man die korrigierte Stichprobenvarianz

  
 
 (11)
 

und die unkorrigierten Stichprobenvarianzen

  
 
 (12)
 
  
 
 (13)
 

Die Formeln (1)–(3) sind mathematisch gesehen ein Spezialfall der Formeln (11)–(13). Z. B. ist die empirische Varianz in der beschreibenden Statistik   der zur abstrakten Schätzfunktion   zugehörige Schätzwert.

In den Verfahren der mathematischen Statistik (Statistische Tests, Konfidenzintervalle etc.) fließt oft der Mittelwert   oder die Varianz der Grundgesamtheit   ein. In der Praxis sind Mittelwert und Varianz der Grundgesamtheit jedoch unbekannt, so dass sie geschätzt werden müssen. Die Formeln (11)–(13) dienen in der mathematischen Statistik also als Schätzfunktion, um die unbekannte Varianz   einer Zufallsvariable   mit unbekannter Verteilung zu schätzen.

Literatur

Bearbeiten
  • Beyer 1988 – Otfried Beyer, Horst Hackel, Volkmar Pieper, Jürgen Tiedge: Wahrscheinlichkeitsrechnung und mathematische Statistik. 5. Auflage. B. G. Teubner, Leipzig 1988, ISBN 3-322-00469-4.
  • Bronstein 2020 – I. N. Bronstein, K. A. Semendjajew, G. Musiol, H. Mühlig: Taschenbuch der Mathematik. 11. Auflage. Verlag Europa-Lehrmittel Nourney, Vollmer GmbH & Co. KG, Haan-Gruiten 2020, ISBN 978-3-8085-5792-1.
  • Duden 2020 – Harald Scheid: Duden: Rechnen und Mathematik. 6. Auflage. Bibliographisches Institut & F.A. Brockhaus AG, Mannheim 2020, ISBN 978-3-411-05346-9.
  • Fahrmeir 2016 – Ludwig Fahrmeir, Rita Künstler, Iris Pigeot, Gerhard Tutz: Statistik. Der Weg zur Datenanalyse. 8. Auflage. Springer Verlag, Berlin / Heidelberg 2016, ISBN 978-3-662-50371-3.
  • Hartung 2005 – Joachim Hartung, Bärbel Elpelt, Karl-Heinz Klösener: Statistik. Lehr- und Handbuch der angewandten Statistik. 14. Auflage. R. Oldenbourg Verlag, München / Wien 2005, ISBN 3-486-57890-1.
  • Kabluchko 2017 – Zakhar Kabluchko: Mathematische Statistik - Skript zur Vorlesung. Münster 2017 (uni-muenster.de [PDF; abgerufen am 1. Februar 2022]).

Einzelnachweise

Bearbeiten
  1. Bronstein 2020, Kapitel 16.3.1.2: Stichprobenfunktionen
  2. Fahrmeir 2016, Kapitel 5: Diskrete Zufallsvariablen und Kapitel 6: Stetige Zufallsvariablen
  3. Hartung 2005, Kapitel II: Wahrscheinlichkeitsrechnung
  4. Beyer 1988
  5. a b Kabluchko 2017, Kapitel 1.4: Empirische Varianz
  6. Kunyu He: Statistics in ML: Why Sample Variance Divided by n Is Still a Good Estimator. 18. Mai 2020, abgerufen am 9. Mai 2022 (englisch).
  7. Fahrmeir 2016, S. 65
  8. Bronstein 2020: Kapitel 16.2.2.3 Erwartungswert und Streuung, S. 827, Formel 16.52.