Kiepert-Hyperbel
Die Kiepert-Hyperbel eines Dreieck, benannt nach Ludwig Kiepert, ist eine spezielle Hyperbel, die durch die drei Eckpunkte des Dreiecks und eine Reihe seiner ausgezeichneten Punkte verläuft.
Definition
BearbeitenAn den Seiten eines Dreiecks werden drei ähnliche gleichschenklige Dreiecke , und angefügt, und zwar jeweils mit einer Seite des gegebenen Dreiecks als Basis. Dann bilden die Spitzen der drei gleichschenkligen Dreiecke ein neues Dreieck , das als Kiepert-Dreieck bezeichnet wird. Das Kiepert-Dreieck und das Ausgangsdreieck sind aufgrund des Satzes von Kiepert perspektivisch, das heißt, die Geraden , und schneiden sich in einem gemeinsamen Punkt , dem Perspektivitätszentrum.
Die Kiepert-Hyperbel des Dreiecks ist nun definiert als der geometrische Ort aller dieser Perspektivitätszentren, die man erhält, wenn man die Basiswinkel der ähnlichen Dreiecke alle Winkel zwischen und durchlaufen lässt.
Bezeichnungen und Koordinaten
BearbeitenDer Basiswinkel der angefügten gleichschenkligen Dreiecke wird positiv genommen, wenn diese nach außen gerichtet sind, andernfalls negativ. Das zugehörige Kiepert-Dreieck wird mit bezeichnet, das Perspektivitätszentrum mit .
Baryzentrische Koordinaten von (unter Verwendung der Conway-Dreiecksnotation):
Die Formel für die Kiepert-Hyperbel in baryzentrischen Koordinaten ist
Der Mittelpunkt der Kiepert-Hyperbel hat die baryzentrischen Koordinaten
die Kimberling-Nummer X(115) und liegt auf dem Feuerbach-Kreis (Neun-Punkte-Kreis).
Eigenschaften
BearbeitenBei der Kiepert-Hyperbel handelt sich um eine gleichseitige Hyperbel, die unter anderem durch folgende Punkte geht:
- die Ecken des gegebenen Dreiecks,
- den Höhenschnittpunkt,
- den Schwerpunkt,
- den Spieker-Punkt,
- die beiden Napoleon-Punkte,
- die beiden Fermat-Punkte,
- den Tarry-Punkt,
- den dritten Brocard-Punkt,
- die beiden Vecten-Punkte.
Die Kiepert-Hyperbel ist isogonal konjugiert zur Brocard-Achse.
Literatur
Bearbeiten- R. H. Eddy, R. Fritsch: The Conics of Ludwig Kiepert: A Comprehensive Lesson in the Geometry of the Triangle. Mathematics Magazine, Band 67, Nr. 3 (Juni, 1994), S. 188–205
- Cristoph Pöppe: Napoleons Punkt und Kieperts Hyperbel. In: Spektrum der Wissenschaft, August 2017
Weblinks
Bearbeiten- Eric W. Weisstein: Kiepert Hyperbola. In: MathWorld (englisch).
- Kiepert-Hyberbel – Animation mit GeoGebra