Killing-Vektorfeld

Vektorfeld auf einer Riemann'schen Mannigfaltigkeit

Ein Killing-Vektorfeld (benannt nach dem deutschen Mathematiker Wilhelm Killing) ist ein Vektorfeld auf einer Riemannschen Mannigfaltigkeit, das die Metrik erhält. Killing-Vektorfelder sind die infinitesimalen Erzeuger von Isometrien (siehe auch Lie-Gruppe).

Entsprechendes gilt für Pseudo-Riemannsche Mannigfaltigkeiten, zum Beispiel in der Allgemeinen Relativitätstheorie.

Definition und Eigenschaften

Bearbeiten

Ein Vektorfeld   ist ein Killing-Vektorfeld, wenn die Lie-Ableitung der Metrik   bezüglich   verschwindet:

 

Mit Hilfe des Levi-Civita-Zusammenhangs bedeutet dies punktweise

 

für alle Vektoren   und  , beziehungsweise dass   ein bezüglich   schiefsymmetrischer Endomorphismus auf dem Tangentialraum ist.

In lokalen Koordinaten führt dies zur sogenannten Killing-Gleichung

 

Ein Killing-Feld ist auf der ganzen Mannigfaltigkeit eindeutig bestimmt durch einen Vektor an einem Punkt und die kovarianten Ableitungen des Vektors an diesem Punkt.

Die Lie-Klammer zweier Killing-Felder ist wieder ein Killing-Feld. Die Killing-Felder einer Mannigfaltigkeit   bilden also eine Lie-Algebra auf  . Dies ist die Lie-Algebra der Isometrie-Gruppe der Mannigfaltigkeit (falls   vollständig ist).

Ein Vektorfeld ist genau dann ein Killing-Vektorfeld, wenn es entlang jeder Geodätischen ein Jacobi-Vektorfeld ist.

Erhaltungsgrößen

Bearbeiten

Da Killing-Vektorfelder Isometrien erzeugen, gibt es in der Physik zu jedem Killing-Vektorfeld eine Erhaltungsgröße der entsprechenden Raumzeit. In der Allgemeinen Relativitätstheorie sind Killing-Vektorfelder daher von großer Bedeutung bei der Charakterisierung von Lösungen der Einsteinschen Feldgleichungen. Die Erhaltungsgröße   zu einem Killing-Vektorfeld   berechnet sich dabei als

 ,

wobei   der Energie-Impuls-Tensor und   der Betrag der 4x4-Determinante des metrischen Tensors ist. In der Formel wurde Einsteins Summenkonvention verwendet.

Die Raumzeit selbst ist eine vierdimensionale pseudo-Riemannsche Mannigfaltigkeit mit einer Zeitkoordinate   („obere Indizes“) und drei Raumkoordinaten  ,   und  , mit gemischter Signatur, zum Beispiel entsprechend dem Schema (-,+,+,+). Das Killing-Vektorfeld hat ebenfalls vier Komponenten; die g-Matrix („4x4“) hat zum Beispiel einen negativen und drei positive Eigenwerte. Die Lorentz-Transformationen im flachen pseudo-Riemannschen Minkowski-Raum können als Pseudo-Drehungen aufgefasst werden und haben als Determinante den Wert Eins. Die Ergebnisse gelten aber auch in nicht-flachen Räumen.

Integrationbereiche und Kausalität

Bearbeiten

Die Frage des Integrationsbereichs in Formeln der obigen Art ist u. a. deshalb diffizil – nicht zufällig fehlen oben genaue Angaben –, weil man i. A. die Begrenztheit der ursächlich in Frage kommenden Raumbereiche (siehe Ursache und Wirkung oder Kausalstruktur) sowie den zeitlichen Vorlauf („Retardation“, von lat. retardare ‚verzögern‘) der Ursachen berücksichtigen und bei allen Größen i. A. die jeweiligen Argumente und die Summationsbereiche explizit angeben muss. Auch das ist oben absichtlich nicht der Fall.

In der Tat ist bei obiger Formel der Integrationsbereich der räumlichen Koordinaten der volle   unter der Voraussetzung, dass Ursache und Wirkung zeitlich unendlich weit auseinanderliegen. Man kann aber statt des   eine beliebige dreidimensionale Hyperfläche wählen, die kausal ähnlich strukturiert ist. Das bedeutet zugleich, dass die Formel nicht für Schwarze Löcher gilt.

Beispiele

Bearbeiten

Genau dann wenn die Koeffizienten   der Metrik   in der Basis   unabhängig von einer lokalen Koordinate   sind, ist   ein Killing-Vektorfeld. In ebendiesen lokalen Koordinaten lautet es dann  , wobei   das Kronecker-Delta ist.[1]

Ein Satz unabhängiger Killing-Vektorfelder der Einheitssphäre   mit der induzierten Metrik   in Kugelkoordinaten sind:

 
 
 

Das entspricht den Drehungen um die  - bzw.  - bzw.  -Achse und in der Quantenmechanik, abgesehen von einem Faktor  , den Komponenten der Drehimpulsoperatoren.

Alle Linearkombinationen dieser Vektorfelder stellen wieder Killing-Vektorfelder dar. Die induzierten Isometrien sind genau die Elemente der Drehgruppe  . Der zugehörige Erhaltungssatz ist der Drehimpulssatz.

Literatur

Bearbeiten
  • Steven Weinberg: Gravitation and Cosmology. John Wiley & sons, New York 1972, ISBN 0-471-92567-5.
  • Jürgen Jost: Riemannian Geometry and Geometric Analysis. Springer Verlag, Berlin 2002, ISBN 3-540-42627-2.
  • Adler, Ronald; Bazin, Maurice & Schiffer, Menahem: Introduction to General Relativity. 2. Auflage. McGraw-Hill, New York 1975, ISBN 0-07-000423-4 (siehe Kapitel 2 und 9).

Einzelnachweise

Bearbeiten
  1. Misner, Thorne, Wheeler: Gravitation. W H Freeman and Company, 1973, ISBN 0-7167-0344-0.