Lie-Gruppe

differenzierbare Mannigfaltigkeit, mathematische Struktur

Eine Lie-Gruppe (auch Lie'sche Gruppe), benannt nach Sophus Lie,[1] ist eine mathematische Struktur. Formal handelt es sich bei einer Lie-Gruppe um eine Gruppe, die auch eine differenzierbare Mannigfaltigkeit ist, sodass die Gruppenverknüpfung und Inversenbildung kompatibel mit der glatten Struktur sind, das bedeutet

und

sind glatte Funktionen.

Lie-Gruppen werden zur Beschreibung von kontinuierlichen Symmetrien verwendet.[2]

Lie-Gruppen und Lie-Algebren wurden um 1870 von Sophus Lie in der Lie-Theorie zur Untersuchung von Symmetrien in Differentialgleichungen eingeführt. Unabhängig von Lie entwickelte Wilhelm Killing ähnliche Ideen zum Studium nichteuklidischer Geometrien. Die älteren Bezeichnungen stetige Gruppe oder kontinuierliche Gruppe für eine Lie-Gruppe beschreiben besser das, was man heute unter einer topologischen Gruppe versteht. Jede Lie-Gruppe ist auch eine topologische Gruppe.

Dieser Artikel behandelt (der üblichen Terminologie folgend) endlich-dimensionale Lie-Gruppen. Es gibt auch eine Theorie unendlich-dimensionaler Lie-Gruppen, beispielsweise Banach-Lie-Gruppen.

Lie-Gruppen sind in fast allen Teilen der heutigen Mathematik sowie in der theoretischen Physik, vor allem der Teilchenphysik, wichtige Werkzeuge.

Erste Beispiele

Bearbeiten
 
Der Kreis mit Mittelpunkt 0 und Radius 1 in der komplexen Zahlenebene ist eine Lie-Gruppe mit komplexer Multiplikation.

Die Menge   der komplexen Zahlen ungleich 0 bildet mit der gewöhnlichen Multiplikation eine Gruppe  . Die Multiplikation ist eine differenzierbare Abbildung   definiert durch  . Auch die durch   definierte Inversion   ist differenzierbar. Die Gruppenstruktur der komplexen Ebene (bzgl. Multiplikation) ist also „mit der Differentialrechnung verträglich“. Dasselbe würde auch für die Gruppe   mit der Addition als Verknüpfung gelten: Dort ist   und  .

Der Einheitskreis in der komplexen Zahlenebene, d. h. die Menge   der komplexen Zahlen vom Betrag 1, ist eine Untergruppe von  , die sogenannte Kreisgruppe: Das Produkt zweier Zahlen vom Betrag 1 hat wieder Betrag 1, ebenso das Inverse. Auch hier hat man eine „mit der Differentialrechnung verträgliche Gruppenstruktur“, d. h. eine Lie-Gruppe.

Andererseits bildet die Menge

 

der Drehmatrizen (Drehungen im  ) eine Gruppe; die Multiplikation ist definiert durch

 

und die Inversion durch

 .

Wenn man die Menge der  -Matrizen auf naheliegende Weise mit dem   identifiziert, dann ist   eine differenzierbare Untermannigfaltigkeit und man kann überprüfen, dass Multiplikation und Inversion differenzierbar sind,   ist also eine Lie-Gruppe.

Es stellt sich heraus, dass es sich bei   und   um „dieselbe“ Lie-Gruppe handelt, d. h., dass die beiden Lie-Gruppen isomorph sind. Man kann nämlich eine Abbildung   definieren, indem man   auf die komplexe Zahl   abbildet, welche auf dem Einheitskreis liegt. Dies ist ein Gruppen-Homomorphismus, denn

 
 
 

Man kann nachprüfen, dass dieser Gruppen-Homomorphismus und seine Umkehrabbildung differenzierbar sind.   ist also ein Lie-Gruppen-Isomorphismus. Aus Sicht der Lie-Gruppen-Theorie sind die Gruppe der Drehmatrizen und der Einheitskreis dieselbe Gruppe.

Eine wichtige Motivation der Lie-Gruppen-Theorie besteht darin, dass man für Lie-Gruppen eine Lie-Algebra definieren kann und sich viele gruppentheoretische oder auch differentialgeometrische Probleme auf das entsprechende Problem in der Lie-Algebra zurückführen und dort lösen lassen. („Lineare Algebra ist einfacher als Gruppentheorie“.) Zur Definition der Lie-Algebra benötigt man die Differenzierbarkeit und die Verträglichkeit der Gruppenoperationen mit dieser.

Für die   ist die Lie-Algebra die imaginäre Achse   mit der trivialen Lie-Klammer. Die Trivialität der Lie-Klammer rührt in diesem Fall daher, dass   eine abelsche Lie-Gruppe ist. Die Lie-Algebra der   ist

 

mit der trivialen Lie-Klammer und man sieht leicht, dass diese beiden Lie-Algebren isomorph sind. (Allgemein entsprechen isomorphe Lie-Gruppen stets isomorphen Lie-Algebren.)

Definitionen

Bearbeiten

Lie-Gruppe

Bearbeiten

Eine Lie-Gruppe ist eine glatte reelle Mannigfaltigkeit, die zusätzlich die Struktur einer Gruppe besitzt, so dass die Gruppenverknüpfung

 

und die Inversion

 

beliebig oft differenzierbar sind. Die Dimension der Lie-Gruppe ist die Dimension der unterliegenden Mannigfaltigkeit. Die unterliegende Mannigfaltigkeit einer Lie-Gruppe trägt sogar eine reell-analytische Struktur und die Gruppenmultiplikation und Inversion sind automatisch (reell-)analytische Funktionen.

Eine komplexe Lie-Gruppe ist eine komplexe Mannigfaltigkeit mit einer Gruppenstruktur, so dass die Gruppenverknüpfung und die Inversion komplex differenzierbar sind.

Lie-Algebra der Lie-Gruppe

Bearbeiten

Zu jeder Lie-Gruppe   können wir eine Lie-Algebra assoziieren, diese besteht aus einem Vektorraum   zusammen mit den Lie-Klammern  . Als Vektorraum nehmen wir hierfür den Tangentialraum   der Lie-Gruppe im neutralen Element  . Um die Lie-Klammern zu definieren, brauchen wir zuerst die  -Operation.

Adjungierte Darstellung und Herleitung der Lie-Klammern

Bearbeiten

Betrachte die Konjugation

 

und die Gruppenaktion der Lie-Gruppe auf sich selber

 

Sei nun   der Differentialoperator an der Stelle  . Die  -Operation ist nun definiert als die Ableitung von   an der Stelle  

 

Da das neutrale Element invariant unter   ist, das bedeutet  , ist   eine Operation des Tangentialraumes   des neutralen Elementes in sich selber

 

Folglich erhalten wir die Darstellung   definiert durch

 

Nun definieren wir die Ableitung von  

 

Die Lie-Klammern sind dann definiert durch

 

Weiteres

Bearbeiten

Die Vektorfelder auf einer glatten Mannigfaltigkeit   bilden mit der Lie-Klammer eine unendlich-dimensionale Lie-Algebra. Die zu einer Lie-Gruppe   gehörende Lie-Algebra   besteht aus dem Unterraum der links-invarianten Vektorfelder auf  . Dieser Vektorraum ist isomorph zum Tangentialraum   am neutralen Element   von  . Insbesondere gilt also  . Bezüglich der Lie-Klammer   ist der Vektorraum   abgeschlossen. Somit ist der Tangentialraum einer Lie-Gruppe   am neutralen Element eine Lie-Algebra. Diese Lie-Algebra nennt man die Lie-Algebra der Lie-Gruppe  .

Zu jeder Lie-Gruppe   mit Lie-Algebra   gibt es eine Exponentialabbildung  . Diese Exponentialabbildung kann man definieren durch  , wobei   der Fluss des links-invarianten Vektorfelds   und   das neutrale Element ist. Falls   eine abgeschlossene Untergruppe der   oder   ist, so ist die so definierte Exponentialabbildung identisch mit der Matrixexponentialfunktion.

Jedes Skalarprodukt auf   definiert eine  -links-invariante Riemannsche Metrik auf  . Im Spezialfall, dass diese Metrik zusätzlich auch rechtsinvariant ist, stimmt die Exponentialabbildung der Riemannschen Mannigfaltigkeit   am Punkt   mit der Lie-Gruppen-Exponentialabbildung überein.

Den Zusammenhang zwischen der Multiplikation in der Lie-Gruppe und der Lie-Klammer in ihrer Lie-Algebra stellt die Baker-Campbell-Hausdorff-Formel her:

 

Lie-Gruppen-Homomorphismus

Bearbeiten

Ein Homomorphismus von Lie-Gruppen   ist ein Gruppenhomomorphismus  , der zugleich eine glatte Abbildung ist. Man kann zeigen, dass dies bereits dann der Fall ist, wenn   stetig ist, und dass   dann sogar analytisch sein muss.

Zu jedem Lie-Gruppen-Homomorphismus   bekommt man durch Differentiation im neutralen Element   einen Lie-Algebren-Homomorphismus  . Es gilt

 

für alle  . Falls   und   einfach zusammenhängend sind, entspricht jeder Lie-Algebren-Homomorphismus eindeutig einem Lie-Gruppen-Homomorphismus.

Ein Isomorphismus von Lie-Gruppen ist ein bijektiver Lie-Gruppen-Homomorphismus.

Lie-Untergruppe

Bearbeiten

Sei   eine Lie-Gruppe. Eine Lie-Untergruppe   ist eine Untergruppe von   zusammen mit einer Topologie und einer glatten Struktur, die diese Untergruppe wieder zu einer Lie-Gruppe macht.

Lie-Untergruppen sind also im Allgemeinen keine eingebetteten Untermannigfaltigkeiten, sondern nur injektiv immersierte Untermannigfaltigkeiten. Ist jedoch   eine eingebettete topologische Untergruppe mit der Struktur einer eingebetteten Untermannigfaltigkeit, dann ist   auch eine Lie-Gruppe.

Beispiele

Bearbeiten
  1. Typische Beispiele sind die allgemeine lineare Gruppe  , also die Gruppe der invertierbaren Matrizen mit der Matrizenmultiplikation als Verknüpfung, sowie deren abgeschlossene Untergruppen, zum Beispiel die Kreisgruppe oder die Gruppe SO(3) aller Drehungen im dreidimensionalen Raum. Weitere Beispiele für Untergruppen der allgemeinen linearen Gruppe sind die
    • Orthogonale Gruppe   und die spezielle orthogonale Gruppe  , siehe dazu die Behandlung als Lie-Gruppe
    • Allgemeine komplex-lineare Gruppe  , die zur abgeschlossenen Untergruppe   mit   isomorph ist
    • Unitäre Gruppe  
    • Spezielle unitäre Gruppe  
    • Spezielle lineare Gruppe   bzw.  
  2. Die Affine Gruppe   und als Untergruppe die Euklidische Gruppe
  3. Poincaré-Gruppe
  4. Galilei-Gruppe
  5. Der Euklidische Raum   mit der Vektoraddition als Gruppenoperation ist eine einigermaßen triviale reelle Lie-Gruppe (  als  -dimensionale Mannigfaltigkeit im  ).

Für abgeschlossene Untergruppen   kann man die Lie-Algebra definieren als   und dies ist äquivalent zu obiger Definition. Hierbei bezeichnet   das Matrixexponential. In diesem Fall stimmt die Exponentialabbildung   mit dem Matrixexponential überein.

Nicht jede Lie-Gruppe ist isomorph zu einer Untergruppe einer allgemeinen linearen Gruppe. Ein Beispiel hierfür ist die universelle Überlagerung von SL(2,R).

Frühgeschichte

Bearbeiten

Gemäß den maßgebenden Quellen über die Frühgeschichte der Lie-Gruppen[3] betrachtete Sophus Lie selbst den Winter 1873–1874 als Geburtsdatum seiner Theorie der stetigen Gruppen. Hawkins schlägt jedoch vor, dass es „Lies erstaunliche Forschungsaktivität während der vierjährigen Periode von Herbst 1869 bis Herbst 1873“ war, die zur Schaffung jener Theorie führte.[3] Viele von Lies frühen Ideen wurden in enger Zusammenarbeit mit Felix Klein entwickelt. Lie sah Klein von Oktober 1869 bis 1872 täglich: in Berlin von Ende Oktober 1869 bis Ende Februar 1870 und in Paris, Göttingen und Erlangen in den folgenden zwei Jahren.[4] Lie gibt an, dass alle Hauptresultate im Jahr 1884 erzielt worden seien. Jedoch wurden während der 1870er alle seine Abhandlungen (bis auf die allererste Mitteilung) in norwegischen Fachzeitschriften veröffentlicht, was eine Wahrnehmung im Rest Europas verhinderte.[5] Im Jahr 1884 arbeitete der junge deutsche Mathematiker Friedrich Engel zusammen mit Lie an einer systematischen Abhandlung über dessen Theorie der stetigen Gruppen. Aus diesen Bemühungen ging das dreibändige Werk Theorie der Transformationsgruppen hervor, dessen Bände in den Jahren 1888, 1890, und 1893 veröffentlicht wurden.

Hilberts fünftes Problem fragte, ob jede lokal euklidische topologische Gruppe eine Lie-Gruppe ist. („lokal euklidisch“ meint, dass die Gruppe eine Mannigfaltigkeit sein soll. Es gibt topologische Gruppen, die keine Mannigfaltigkeiten sind, zum Beispiel die Cantor-Gruppe oder Solenoide.) Das Problem wurde erst 1952 von Gleason, Montgomery und Zippin gelöst, mit einer positiven Antwort. Der Beweis hängt eng mit der Strukturtheorie der lokalkompakten Gruppen zusammen, welche eine weite Verallgemeinerung der Lie-Gruppen bilden.

Lies Ideen waren nicht isoliert vom Rest der Mathematik. In der Tat war sein Interesse an der Geometrie von Differentialgleichungen zunächst motiviert durch die Arbeit von Carl Gustav Jacobi über die Theorie der partiellen Differentialgleichungen erster Ordnung und die Gleichungen der klassischen Mechanik. Ein Großteil der Arbeiten Jacobis wurde in den 1860ern postum veröffentlicht, was in Frankreich und Deutschland ein enormes Interesse erzeugte.[6] Lies idée fixe war es eine Theorie der Symmetrie von Differentialgleichungen zu entwickeln, die für diese bewerkstelligen sollte, was Évariste Galois für algebraische Gleichungen erreicht hatte: nämlich sie mit Hilfe der Gruppentheorie zu klassifizieren. Zusätzlicher Antrieb zur Betrachtung stetiger Gruppen entstand durch Ideen Bernhard Riemanns zu den Grundlagen der Geometrie und deren Entwicklung durch Klein (s. auch Erlanger Programm).

Somit wurden drei Hauptthemen der Mathematik des 19. Jahrhunderts durch Lie in der Schaffung seiner neuen Theorie vereint:

  • die Idee der Symmetrie, wie sie durch Galois’ Idee einer Gruppe erklärt wird,
  • die geometrische Theorie und explizite Lösung der Differentialgleichungen der Mechanik, wie sie von Poisson und Jacobi ausgearbeitet wurde und
  • das neue Verständnis der Geometrie, das durch die Arbeiten Plückers, Möbius’, Graßmanns und anderer entstanden war und das seinen Höhepunkt in Riemanns revolutionärer Vision dieses Gegenstandes erreichte.

Auch wenn Sophus Lie heute rechtmäßig als der Schöpfer der Theorie der stetigen Gruppen betrachtet wird, wurde ein großer Fortschritt in der Entwicklung der zugehörigen Strukturtheorie, die einen tiefgehenden Einfluss auf die nachfolgende Entwicklung der Mathematik hatte, durch Wilhelm Killing erbracht, der 1888 den ersten Artikel einer Serie mit dem Titel Die Zusammensetzung der stetigen endlichen Transformationsgruppen veröffentlichte.[7]

Die Arbeit Killings, die später durch Élie Cartan verfeinert wurde, führte zur Klassifikation der halbeinfachen Lie-Algebren, Cartans Theorie der symmetrischen Räume und Hermann Weyls Beschreibung der Darstellungen der kompakten und halbeinfachen Lie-Gruppen durch Gewichte.

Weyl brachte die frühe Periode in der Entwicklung der Theorie der Lie-Gruppen zur Reife, indem er nicht nur die irreduziblen Darstellungen halbeinfacher Lie-Gruppen klassifizierte und die Theorie der Gruppen mit der neu entstandenen Quantenmechanik in Verbindung brachte, sondern indem er auch Lies Theorie ein solideres Fundament dadurch verlieh, dass er klar zwischen Lies infinitesimalen Gruppen (den heutigen Lie-Algebren) und den eigentlichen Lie-Gruppen unterschied und die Untersuchung der Topologie der Lie-Gruppen begann.[8] Die Theorie der Lie-Gruppen wurde systematisch in zeitgemäßer mathematischer Sprache in einer Monographie von Claude Chevalley ausgearbeitet.

Differentialgeometrie von Lie-Gruppen

Bearbeiten

Sei   eine kompakte Lie-Gruppe mit Killingform   und adjungierter Darstellung  . Dann definiert   ein  -invariantes Skalarprodukt auf der Lie-Algebra   und damit eine bi-invariante Riemannsche Metrik auf  . Für diese Metrik gelten folgende Formeln, die differentialgeometrische Größen mittels linearer Algebra (Berechnung von Kommutatoren in  ) zu bestimmen erlauben:

  • Levi-Civita-Zusammenhang:  
  • Schnittkrümmung:   für orthonormale  
  • Ricci-Krümmung:   für eine Orthonormalbasis mit  
  • Skalarkrümmung:   für eine Orthonormalbasis.

Insbesondere ist die Schnittkrümmung bi-invarianter Metriken auf kompakten Lie-Gruppen stets nichtnegativ.

Klassifikationsmöglichkeiten

Bearbeiten

Jede Lie-Gruppe ist eine topologische Gruppe. Somit besitzt eine Lie-Gruppe auch eine topologische Struktur und kann nach topologischen Attributen klassifiziert werden: Lie-Gruppen können beispielsweise zusammenhängend, einfach-zusammenhängend oder kompakt sein.

Man kann Lie-Gruppen auch nach ihren algebraischen, gruppentheoretischen Eigenschaften klassifizieren. Lie-Gruppen können einfach, halbeinfach, auflösbar, nilpotent oder abelsch sein. Dabei ist zu beachten, dass gewisse Eigenschaften in der Theorie der Lie-Gruppen anders definiert werden als sonst in der Gruppentheorie üblich: So nennt man eine zusammenhängende Lie-Gruppe einfach oder halbeinfach, wenn ihre Lie-Algebra einfach oder halbeinfach ist. Eine einfache Lie-Gruppe G ist dann im gruppentheoretischen Sinne nicht notwendigerweise einfach. Es gilt aber:

Ist G eine einfache Lie-Gruppe mit Zentrum Z, dann ist die Faktorgruppe G/Z auch einfach im gruppentheoretischen Sinne.

Auch die Eigenschaften nilpotent und auflösbar definiert man meist über die entsprechende Lie-Algebra.

Halbeinfache komplexe Lie-Algebren werden über ihre Dynkin-Diagramme klassifiziert. Weil jede Lie-Algebra die Lie-Algebra einer eindeutigen einfach zusammenhängenden Lie-Gruppe ist, bekommt man daraus eine Klassifikation der einfach zusammenhängenden halbeinfachen komplexen Lie-Gruppen (und damit also eine Klassifikation der universellen Überlagerungen von Komplexifierungen beliebiger halbeinfacher reeller Lie-Gruppen).

Verallgemeinerungen (und verwandte Theorien)

Bearbeiten

Man kann die hier vorgestellte Theorie der (endlich-dimensionalen, reellen oder komplexen) Lie-Gruppen auf vielfältige Weise verallgemeinern:

  • Wenn man statt endlich-dimensionalen Mannigfaltigkeiten unendlich-dimensionale Mannigfaltigkeiten zulässt, die über einem Hilbertraum, einem Banachraum, einem Fréchetraum bzw. einem lokalkonvexen Raum modelliert sind, so erhält man je nachdem Hilbert-Lie-Gruppen, Banach-Lie-Gruppen, Frechet-Lie-Gruppen, bzw. lokalkonvexe Lie-Gruppen. Die Theorie von Hilbert-Lie-Gruppen und Banach-Lie-Gruppen sind noch vergleichsweise ähnlich zur endlich-dimensionalen Theorie, aber für allgemeinere Räume wird die Sache deutlich komplizierter, da die Differentialrechnung in solchen Räumen komplizierter wird. Insbesondere gibt es mehrere nicht-äquivalente Theorien für solche Differentialrechnungen. Jede unendlich-dimensionale Lie-Gruppe besitzt eine (ebenfalls unendlich-dimensionale) Lie-Algebra.
  • Wenn man statt reeller und komplexer Zahlen andere topologische Körper erlaubt, so erhält man z. B.  -adische Lie-Gruppen. Auch hier ist es möglich, jeder solchen Lie-Gruppe eine Lie-Algebra zuzuordnen, diese ist dann natürlich auch über einem anderen Grundkörper definiert.
  • Wenn man die Klasse der (endlich-dimensionalen, reellen) Lie-Gruppen bezüglich projektiver Limites abschließt, erhält man die Klasse der Pro-Lie-Gruppen, die insbesondere alle zusammenhängenden lokalkompakten Gruppen enthält. Auch jede solche Gruppe besitzt eine Lie-Algebra, die als projektiver Limes von endlich-dimensionalen Lie-Algebren entsteht.
  • Keine Verallgemeinerung, aber ein ähnliches Konzept erhält man, wenn man keine glatten Mannigfaltigkeiten, sondern algebraische Varietäten mit einer verträglichen Gruppenstruktur betrachtet. Das führt zur Theorie der Algebraischen Gruppen, die viele Gemeinsamkeiten mit der Theorie der Lie-Gruppen besitzt. Insbesondere besitzt auch jede algebraische Gruppe eine dazugehörige Lie-Algebra. Auch die endlichen Gruppen vom Lie-Typ gehören in diese Kategorie.

Anmerkungen

Bearbeiten
  1. Zuerst von dessen Doktoranden Arthur Tresse in seiner Dissertation 1893, Acta Mathematica
  2. Grob gesprochen ist eine Lie-Gruppe eine Gruppe, die ein Kontinuum bzw. ein stetig zusammenhängendes Ganzes bildet. Ein einfaches Beispiel für eine Lie-Gruppe ist die Gesamtheit aller Drehungen einer Ebene um einen fest ausgezeichneten Punkt, der in dieser Ebene liegt: Alle diese Drehungen bilden zusammen eine Gruppe, aber auch ein Kontinuum in dem Sinne, dass sich jede dieser Drehungen eindeutig durch einen Winkel zwischen 0° und 360° Grad bzw. ein Bogenmaß zwischen 0 und 2π beschreiben lässt und in dem Sinne, dass Drehungen, die sich nur um kleine Winkel voneinander unterscheiden, kontinuierlich ineinander überführbar sind. Ein Kreis, der in der betrachteten Ebene liegt und den fest ausgezeichneten Punkt als seinen Mittelpunkt besitzt, ist dann aus Sicht dieser Lie-Gruppe als symmetrisch zu bezeichnen, da er unter jeder Drehung unverändert bleibt. Hingegen ist ein Rechteck, dessen Mittelpunkt mit dem festgelegten Punkt übereinstimmt, aus Sicht der vorliegenden Lie-Gruppe nicht symmetrisch. Mit der angegebenen Lie-Gruppe lassen sich also Figuren der Ebene beschreiben, die eine „Drehsymmetrie“ aufweisen.
  3. a b Hawkins, 2000, S. 1
  4. Hawkins, 2000, S. 2
  5. Hawkins, 2000, S. 76
  6. Hawkins, 2000, S. 43
  7. Hawkins, 2000, S. 100
  8. Borel, 2001

Literatur

Bearbeiten
  • John F. Adams: Lectures on exceptional Lie Groups (= Chicago Lectures in Mathematics.). University of Chicago Press, Chicago IL u. a. 1996, ISBN 0-226-00527-5.
  • Armand Borel: Essays in the history of Lie groups and algebraic groups (= History of Mathematics. Bd. 21). American Mathematical Society u. a., Providence RI 2001, ISBN 0-8218-0288-7.
  • Daniel Bump: Lie groups (= Graduate Texts in Mathematics. Band 225). 2nd edition. Springer, New York NY u. a. 2013, ISBN 978-1-4614-8023-5.
  • Nicolas Bourbaki: Elements of mathematics. Lie groups and Lie algebras. 3 Bände. (Bd. 1: Chapter 1–3. Bd. 2: Chapters 4–6. Bd. 3: Chapters 7–9.). Addison-Wesley, Reading 1975–2005, ISBN 3-540-64242-0 (Bd. 1), ISBN 3-540-42650-7 (Bd. 2), ISBN 3-540-43405-4 (Bd. 3).
  • Claude Chevalley: Theory of Lie groups (= Princeton Mathematical Series. Bd. 8). Band 1. 15th printing. Princeton University Press, Princeton NJ 1999, ISBN 0-691-04990-4.
  • William Fulton, Joe Harris, Representation Theory. A First Course (= Graduate Texts in Mathematics. Band 129). Springer, New York NY u. a. 1991, ISBN 0-387-97495-4.
  • Thomas Hawkins: Emergence of the theory of Lie groups. An essay in the history of mathematics 1869–1926. Springer, New York NY u. a. 2000. ISBN 0-387-98963-3.
  • Brian C. Hall: Lie Groups, Lie Algebras, and Representations. An Elementary Introduction (= Graduate Texts in Mathematics. Bd. 222). Springer, New York NY u. a. 2003, ISBN 0-387-40122-9.
  • Anthony W. Knapp: Lie Groups Beyond an Introduction. 2. Auflage. Birkhäuser, Boston MA u. a. 2002, ISBN 3-7643-4259-5.
  • Wulf Rossmann: Lie Groups. An Introduction Through Linear Groups (= Oxford Graduate Texts in Mathematics. Band 5). Reprint 2003 (with Corrections). Oxford University Press, Oxford u. a. 2004, ISBN 0-19-859683-9 (Die Neuauflage von 2003 korrigiert einige unglückliche Druckfehler).
  • Jean-Pierre Serre: Lie Algebras and Lie Groups. 1964 Lectures given at Harvard University (= Lecture Notes in Mathematics. Bd. 1500). Springer, Berlin u. a. 1992, ISBN 3-540-55008-9.
  • John Stillwell: Naive Lie Theory (= Undergraduate Texts in Mathematics.). Springer, New York NY u. a. 2008, ISBN 978-0-387-78214-0 (aus dem Vorwort: "developing .. Lie theory .. from single-variable calculus and linear algebra").
Bearbeiten
Commons: Lie-Gruppe – Sammlung von Bildern, Videos und Audiodateien