Lusternik–Schnirelmann-Kategorie

homotopieinvariante natürliche Zahl

In der Mathematik, ist die Lusternik–Schnirelmann-Kategorie (oder LS-Kategorie) eines topologischen Raumes eine homotopieinvariante natürliche Zahl (also keine Kategorie in mathematischem Sinne), also identisch für homotopieäquivalente (und daher insbesondere homöomorphe) Räume. Sie kann daher dafür benutzt werden, um zu untersuchen, ob topologische Räume homotopieäquivalent sind.

Definition

Bearbeiten

Die Lusternik–Schnirelmann-Kategorie eines topologischen Raumes   ist die kleinste natürliche Zahl  , für die:

  • eine offene Überdeckung  von   existiert,
  • für jedes   die Inklusion   nullhomotop ist.
  • Ein topologischer Raum   ist genau dann zusammenziehbar, wenn für dessen Lusternik–Schnirelmann-Kategorie   gilt.
  • Die Lusternik–Schnirelmann-Kategorie hängt mit der topologischen Komplexität zusammen über[1]:
     
  • Für wegzusammenhängende und parakompakte topologische Räume gilt:[2]
     

Beispiele

Bearbeiten
  • Es gilt  ,   und  .[3]
  • Die Lusternik–Schnirelmann-Kategorie der Sphäre   ist  , da diese von einer zusammenziehbaren Nord- und Südhalbkugel überdeckt wird. Da das Möbiusband homotopieäquivalent zu   ist, hat dieses ebenfalls die Lusternik–Schnirelmann-Kategorie  .

Anmerkungen

Bearbeiten

Oft wird eine andere Definition als die obige für die Lusternik–Schnirelmann-Kategorie benutzt, die eine Zahl kleiner ist.

Im Allgemeinen ist die Berechnung der Invariante nicht einfach, die ursprünglich von Lazar Lusternik und Lev Schnirelmann in Verbindung mit Variationsproblemen eingeführt wurde. Es gibt Verbindungen der Invariante mit der algebraischen Topologie, insbesondere der Cup-Länge. In der modernen Definition ist die Cup-Länge dabei eine untere Schranke für die LS-Kategorie.

Die ursprüngliche Definition bezog sich zunächst nur auf Mannigfaltigkeiten und gab die untere Schranke an kritischen Punkten an, die eine reelle Funktion auf dieser hat. Das kann mit dem entsprechenden Resultat in Morse-Theorie vergleichen werden, in welcher die Summe aller Betti-Zahlen eine untere Schranke für die kritischen Punkte einer Morsefunktion ist.

Es gibt Verallgemeinerungen der Invariante Im Bezug auf verschiedene andere mathematische Konzepte wie Gruppenwirkungen, Blätterungen oder Simplizialkomplexe.

Siehe auch

Bearbeiten

Referenzen

Bearbeiten

Einzelnachweise

Bearbeiten
  1. M. Farber: Topological complexity of motion planning. In: Discrete & Computational Geometry, S. 211–221 (englisch).
  2. I. M. James: On category, in the sense of Lusternik-Schnirelman. In; Topology. Band 17, 1978, S. 331–348. doi:10.1016/0040-9383(78)90002-2.
  3. Alexander Dranishnikov, Rustam Sadykov (2017). On LS-category and topological complexity of connected sum. arxiv:1707.07088