Matrix (Mathematik)

Anordnung von Zahlen oder anderen mathematischen Objekten in Tabellenform
(Weitergeleitet von Matrizenrechnung)

In der Mathematik versteht man unter einer Matrix (Plural Matrizen) eine rechteckige Anordnung (Tabelle) von Elementen (meist mathematischer Objekte, etwa Zahlen). Rechteckig bedeutet, dass die Anordnung der Elemente in Zeilen und Spalten stattfindet. Die Zeilen und Spalten einer Matrix nennt man zusammengefasst auch Reihen.

Schema für eine allgemeine -Matrix
Bezeichnungen

Das Element einer Matrix in der -ten Zeile und -ten Spalte wird mit bezeichnet. Mit den Objekten einer Matrix lässt sich dann in bestimmter Weise rechnen, indem man Matrizen zum Beispiel addiert oder miteinander multipliziert.

Matrizen sind ein Schlüsselkonzept der linearen Algebra und tauchen in fast allen Gebieten der Mathematik auf. Sie stellen Zusammenhänge, in denen Linearkombinationen eine Rolle spielen, übersichtlich dar und erleichtern damit Rechen- und Gedankenvorgänge. Sie werden insbesondere dazu benutzt, lineare Abbildungen darzustellen und lineare Gleichungssysteme zu beschreiben und zu lösen.

Der Name „Matrix“ (lateinisch für „Muttertier“, „Gebärmutter“,[1] abgeleitet von mater – Mutter) wurde 1850 von James Joseph Sylvester geprägt.[2]

Eine Anordnung, wie in nebenstehender Abbildung, von Elementen erfolgt in Zeilen und Spalten. Die Verallgemeinerung auf mehr als zwei Indizes wird auch Hypermatrix genannt.[3]

Begriffe und erste Eigenschaften

Bearbeiten

Notation

Bearbeiten

Als Notation hat sich die Anordnung der Elemente in Zeilen und Spalten zwischen zwei großen öffnenden und schließenden Klammern durchgesetzt. In der Regel verwendet man runde Klammern, es werden aber auch eckige verwendet. Zum Beispiel bezeichnen

  und  

Matrizen mit zwei Zeilen und drei Spalten. Matrizen werden üblicherweise mit Großbuchstaben (manchmal fett gedruckt oder, handschriftlich, einfach oder doppelt unterstrichen), vorzugsweise  , bezeichnet. Eine Matrix mit   Zeilen und   Spalten nennt man eine Matrix vom Typ   oder kurz  -Matrix.[4] Auch die Schreibweisen  -Matrix und  -Matrix sind verbreitet. Man schreibt sie

 .

Elemente der Matrix

Bearbeiten

Ein   nennt man Matrixelement oder kurz Element,[5][6] neuerdings auch Matrixeintrag oder kurz Eintrag.[7] Auch die Begriffe Matrixkomponente oder kurz Komponente werden verwendet.[5] Insbesondere im Fall von  - oder  -Matrizen ist der Name Komponente verbreitet.[8] Bei Tensoren spricht man auch von Tensorkoordinate oder kurz Koordinate.[9]

Die Elemente können sowohl reelle als auch komplexe Zahlen sein, aber auch andere mathematische Objekte, z. B. Vektoren, Polynome, Differentiale, andere Formeln oder selbst wieder Matrizen.[10]

Ein bestimmtes Element beschreibt man durch zwei Indizes, meist ist das Element in der ersten Zeile und der ersten Spalte durch   beschrieben. Allgemein bezeichnet   das Element in der  -ten Zeile und der  -ten Spalte. Bei der Indizierung wird dabei stets als erstes der Zeilenindex und als zweites der Spaltenindex des Elements genannt. Merkregel: Zeile zuerst, Spalte später. Wenn Verwechslungsgefahr besteht, werden die beiden Indizes mit einem Komma abgetrennt. So wird zum Beispiel das Matrixelement in der ersten Zeile und der elften Spalte mit   bezeichnet.

Einzelne Zeilen und Spalten einer Matrix werden oft als Spalten- oder Zeilenvektoren bezeichnet. Ein Beispiel:

  hier sind   und   die Spalten oder Spaltenvektoren sowie   und   die Zeilen oder Zeilenvektoren.

Bei einzeln stehenden Zeilen- und Spaltenvektoren einer Matrix wird gelegentlich der unveränderliche Index weggelassen. Manchmal werden Spaltenvektoren zur kompakteren Darstellung als transponierte Zeilenvektoren geschrieben, also:

  oder   als   oder  

Der Typ einer Matrix ergibt sich aus der Anzahl ihrer Zeilen und Spalten. Eine Matrix mit   Zeilen und   Spalten nennt man eine  -Matrix (sprich: m-mal-n- oder m-Kreuz-n-Matrix). Stimmen Zeilen- und Spaltenanzahl überein, so spricht man von einer quadratischen Matrix.

Schreibweise für quadratische Matrix A:

 

Gesprochen: A ist eine Matrix der Menge (Matrizenring) der quadratischen Matrizen mit n Zeilen und Spalten über dem Ring R (in der Regel ist R ein Körper)

Eine Matrix, die aus nur einer Spalte oder nur einer Zeile besteht, wird üblicherweise als Vektor aufgefasst. Einen Vektor mit   Elementen kann man je nach Kontext als einspaltige  -Matrix oder einzeilige  -Matrix darstellen. Neben den Begriffen Spaltenvektor und Zeilenvektor sind hierfür die Begriffe Spaltenmatrix und Zeilenmatrix geläufig. Eine  -Matrix ist sowohl Spalten- als auch Zeilenmatrix und wird als Skalar angesehen.

Formale Darstellung

Bearbeiten

Eine Matrix ist eine doppelt indizierte Familie. Formal ist dies eine Funktion

 

die jedem Indexpaar   als Funktionswert das Element   zuordnet. Beispielsweise wird dem Indexpaar   als Funktionswert das Element   zugeordnet. Der Funktionswert   ist also das Element in der  -ten Zeile und der  -ten Spalte. Die Variablen   und   entsprechen der Anzahl der Zeilen bzw. Spalten. Nicht zu verwechseln mit dieser formalen Definition einer Matrix als Funktion ist, dass Matrizen selbst lineare Abbildungen beschreiben.

Die Menge   aller  -Matrizen über der Menge   wird in üblicher mathematischer Notation auch   geschrieben; hierfür hat sich die Kurznotation   eingebürgert. Manchmal werden die Schreibweisen     oder seltener   benutzt.

Addition und Multiplikation

Bearbeiten

Auf dem Raum der Matrizen werden elementare Rechenoperationen definiert.

Matrizenaddition

Bearbeiten

Zwei Matrizen können addiert werden, wenn sie vom selben Typ sind, das heißt, wenn sie dieselbe Anzahl von Zeilen und dieselbe Anzahl von Spalten besitzen. Die Summe zweier  -Matrizen ist komponentenweise definiert:

 

Rechenbeispiel:

 

In der linearen Algebra sind die Matrixelemente üblicherweise Elemente eines Körpers (Körperelemente), wie der reellen oder komplexen Zahlen. In diesem Fall ist die Matrizenaddition assoziativ, kommutativ und besitzt mit der Nullmatrix ein neutrales Element. Im Allgemeinen besitzt die Matrizenaddition diese Eigenschaften jedoch nur, wenn die Matrixelemente Elemente einer algebraischen Struktur sind, die diese Eigenschaften hat.

Skalarmultiplikation

Bearbeiten

Eine Matrix wird mit einem Skalar multipliziert, indem jedes Element der Matrix mit dem Skalar multipliziert wird:

 

Rechenbeispiel:

 

Die Skalarmultiplikation darf nicht mit dem Skalarprodukt verwechselt werden. Um die Skalarmultiplikation durchführen zu dürfen, müssen der Skalar   und die Matrixelemente demselben Ring   entstammen. Die Menge der  -Matrizen ist in diesem Fall ein (Links-)Modul über  

Matrizenmultiplikation

Bearbeiten

Zwei Matrizen können multipliziert werden, wenn die Spaltenanzahl der linken mit der Zeilenanzahl der rechten Matrix übereinstimmt. Das Produkt einer  -Matrix   und einer  -Matrix   ist eine  -Matrix   deren Elemente berechnet werden, indem die Produktsummenformel, ähnlich dem Skalarprodukt, auf Paare aus einem Zeilenvektor der ersten und einem Spaltenvektor der zweiten Matrix angewandt wird:

 

Die Matrizenmultiplikation ist nicht kommutativ, d. h., im Allgemeinen gilt  . Die Matrizenmultiplikation ist allerdings assoziativ, d. h., es gilt stets:

 

Eine Kette von Matrix-Multiplikationen kann daher unterschiedlich geklammert werden. Das Problem, eine Klammerung zu finden, die zu einer Berechnung mit der minimalen Anzahl von elementaren arithmetischen Operationen führt, ist ein Optimierungsproblem. Die Matrizenaddition und Matrizenmultiplikation genügen zudem den beiden Distributivgesetzen:

 

für alle  -Matrizen   und  -Matrizen   sowie

 

für alle  -Matrizen   und  -Matrizen  

Quadratische Matrizen   können mit sich selbst multipliziert werden; analog zur Potenz bei den reellen Zahlen führt man abkürzend die Matrixpotenz   oder   ein. Damit ist es auch sinnvoll, quadratische Matrizen als Elemente in Polynome einzusetzen. Zu weitergehenden Ausführungen hierzu siehe unter Charakteristisches Polynom. Zur einfacheren Berechnung kann hier die jordansche Normalform verwendet werden. Quadratische Matrizen über   oder   kann man darüber hinaus sogar in Potenzreihen einsetzen, vgl. Matrixexponential. Eine besondere Rolle bezüglich der Matrizenmultiplikation spielen die quadratischen Matrizen über einem Ring  , also  . Diese bilden selbst mit der Matrizenaddition und -multiplikation wiederum einen Ring, der Matrizenring genannt wird.

Weitere Rechenoperationen

Bearbeiten

Transponierte Matrix

Bearbeiten
 
Animation zur Transponierung der Matrix A

Die Transponierte einer  -Matrix   ist die  -Matrix  , das heißt, zu

 

ist

 

die Transponierte. Man schreibt also die erste Zeile als erste Spalte, die zweite Zeile als zweite Spalte usw. Die Matrix wird an ihrer Hauptdiagonalen   gespiegelt. Es gelten die folgenden Rechenregeln:

 

Bei Matrizen über   ist die adjungierte Matrix genau die transponierte Matrix.

Inverse Matrix

Bearbeiten

Falls die Determinante einer quadratischen  -Matrix   über einem Körper   nicht gleich null ist, d. h., falls  , so existiert die zur Matrix   inverse Matrix  . Für diese gilt

 ,

wobei   die  -Einheitsmatrix ist. Matrizen, die eine inverse Matrix besitzen, bezeichnet man als invertierbare oder reguläre Matrizen. Diese haben vollen Rang. Umgekehrt werden nichtinvertierbare Matrizen als singuläre Matrizen bezeichnet. Eine Verallgemeinerung der Inversen für singuläre Matrizen sind sog. pseudoinverse Matrizen.

Vektor-Vektor-Produkte

Bearbeiten

Das Matrixprodukt   zweier  -Vektoren   und   ist nicht definiert, da die Anzahl   der Spalten von   im Allgemeinen ungleich der Anzahl   der Zeilen von   ist. Die beiden Produkte   und   existieren jedoch.

Das erste Produkt   ist eine  -Matrix, die als Zahl interpretiert wird; sie wird das Standardskalarprodukt von   und   genannt und mit   oder   bezeichnet. Geometrisch entspricht dieses Skalarprodukt in einem kartesischen Koordinatensystem dem Produkt

 

der Beträge der beiden Vektoren und des Kosinus des von den beiden Vektoren eingeschlossenen Winkels. Beispielsweise gilt

 

Das zweite Produkt   ist eine  -Matrix und heißt dyadisches Produkt oder Tensorprodukt von   und   (geschrieben  ). Seine Spalten sind skalare Vielfache von  , seine Zeilen skalare Vielfache von  . Beispielsweise gilt

 

Vektorräume von Matrizen

Bearbeiten

Die Menge der  -Matrizen über einem Körper   bildet mit der Matrizenaddition und der Skalarmultiplikation einen  -Vektorraum. Dieser Vektorraum   hat die Dimension  . Eine Basis von   ist gegeben durch die Menge der Standardmatrizen   mit  ,  . Diese Basis wird manchmal als Standardbasis von   bezeichnet.

Die Spur des Matrixprodukts  

 

ist dann im Spezialfall   ein reelles Skalarprodukt. In diesem euklidischen Vektorraum stehen die symmetrischen Matrizen und die schiefsymmetrischen Matrizen senkrecht aufeinander. Ist   eine symmetrische und   eine schiefsymmetrische Matrix, so gilt  .

Im Spezialfall   ist die Spur des Matrixproduktes  

 

ein komplexes Skalarprodukt und der Matrizenraum wird zu einem unitären Vektorraum. Dieses Skalarprodukt wird Frobenius-Skalarprodukt genannt. Die von dem Frobenius-Skalarprodukt induzierte Norm heißt Frobeniusnorm und mit ihr wird der Matrizenraum zu einem Banachraum.

Anwendungen

Bearbeiten

Zusammenhang mit linearen Abbildungen

Bearbeiten

Das Besondere an Matrizen über einem Ring   ist der Zusammenhang zu linearen Abbildungen. Zu jeder Matrix   lässt sich eine lineare Abbildung mit Definitionsbereich   (Menge der Spaltenvektoren) und Wertebereich   definieren, indem man jeden Spaltenvektor   auf   abbildet. Umgekehrt entspricht jeder linearen Abbildung   auf diese Weise genau eine  -Matrix  ; dabei sind die Spalten von   die Bilder der Standard-Basisvektoren   von   unter  . Diesen Zusammenhang zwischen linearen Abbildungen und Matrizen bezeichnet man auch als (kanonischen) Isomorphismus

 

Er stellt bei vorgegebenem     und   eine Bijektion zwischen der Menge der Matrizen und der Menge der linearen Abbildungen dar. Das Matrixprodukt geht hierbei über in die Komposition (Hintereinanderausführung) linearer Abbildungen. Weil die Klammerung bei der Hintereinanderausführung dreier linearer Abbildungen keine Rolle spielt, gilt dies für die Matrixmultiplikation, diese ist also assoziativ.

Ist   sogar ein Körper, kann man statt der Spaltenvektorräume beliebige endlichdimensionale  -Vektorräume   und   (der Dimension   bzw.  ) betrachten. (Falls   ein kommutativer Ring mit 1 ist, dann kann man analog freie K-Moduln betrachten.) Diese sind nach Wahl von Basen   von   und   von   zu den Koordinatenräumen   bzw.   isomorph, weil zu einem beliebigen Vektor   eine eindeutige Zerlegung in Basisvektoren

 

existiert und die darin vorkommenden Körperelemente   den Koordinatenvektor

 

bilden. Jedoch hängt der Koordinatenvektor von der verwendeten Basis   ab, die daher in der Bezeichnung   vorkommt.

Analog verhält es sich im Vektorraum   Ist eine lineare Abbildung   gegeben, so lassen sich die Bilder der Basisvektoren von   eindeutig in die Basisvektoren von   zerlegen in der Form

 

mit Koordinatenvektor

 

Die Abbildung ist dann vollständig festgelegt durch die sog. Abbildungsmatrix

 

denn für das Bild des o. g. Vektors   gilt

 

also   („Koordinatenvektor = Matrix mal Koordinatenvektor“). (Die Matrix   hängt von den verwendeten Basen   und   ab; bei der Multiplikation wird die Basis  , die links und rechts vom Malpunkt steht, „weggekürzt“, und die „außen“ stehende Basis   bleibt übrig.)

Die Hintereinanderausführung zweier linearer Abbildungen   und   (mit Basen  ,   bzw.  ) entspricht dabei der Matrixmultiplikation, also

 

(auch hier wird die Basis   „weggekürzt“).

Somit ist die Menge der linearen Abbildungen von   nach   wieder isomorph zu   Der Isomorphismus   hängt aber von den gewählten Basen   und   ab und ist daher nicht kanonisch: Bei Wahl einer anderen Basis   für   bzw.   für   wird derselben linearen Abbildung nämlich eine andere Matrix zugeordnet, die aus der alten durch Multiplikation von rechts bzw. links mit einer nur von den beteiligten Basen abhängigen invertierbaren  - bzw.  -Matrix (sog. Basiswechselmatrix) entsteht. Das folgt durch zweimalige Anwendung der Multiplikationsregel aus dem vorigen Absatz, nämlich

 

(„Matrix = Basiswechselmatrix mal Matrix mal Basiswechselmatrix“). Dabei bilden die Identitätsabbildungen   und   jeden Vektor aus   bzw.   auf sich selbst ab.

Bleibt eine Eigenschaft von Matrizen unberührt von solchen Basiswechseln, so ist es sinnvoll, diese Eigenschaft basisunabhängig der entsprechenden linearen Abbildung zuzusprechen.

Im Zusammenhang mit Matrizen oft auftretende Begriffe sind der Rang und die Determinante einer Matrix. Der Rang ist (falls   ein Körper ist) im angeführten Sinne basisunabhängig, und man kann somit vom Rang auch bei linearen Abbildungen sprechen. Die Determinante ist nur für quadratische Matrizen definiert, die dem Fall   entsprechen; sie bleibt unverändert, wenn derselbe Basiswechsel im Definitions- und Wertebereich durchgeführt wird, wobei beide Basiswechselmatrizen zueinander invers sind:

 

In diesem Sinne ist also die Determinante basisunabhängig.

Umformen von Matrizengleichungen

Bearbeiten

Speziell in den multivariaten Verfahren werden häufig Beweisführungen, Herleitungen usw. im Matrizenkalkül durchgeführt.

Gleichungen werden im Prinzip wie algebraische Gleichungen umgeformt, wobei jedoch die Nichtkommutativität der Matrixmultiplikation sowie die Existenz von Nullteilern beachtet werden muss.

Beispiel: Lineares Gleichungssystem als einfache Umformung

Gesucht ist der Lösungsvektor   eines linearen Gleichungssystems

 

mit   als  -Koeffizientenmatrix. Wenn die inverse Matrix   existiert, kann man mit ihr von links multiplizieren:

 

und man erhält als Lösung

 

Spezielle Matrizen

Bearbeiten

Eigenschaften von Endomorphismen

Bearbeiten

Die folgenden Eigenschaften quadratischer Matrizen entsprechen Eigenschaften von Endomorphismen, die durch sie dargestellt werden.

Orthogonale Matrizen

Eine reelle Matrix   ist orthogonal, wenn die zugehörige lineare Abbildung das Standardskalarprodukt erhält, das heißt, wenn

 

gilt. Diese Bedingung ist äquivalent dazu, dass   die Gleichung

 

bzw.

 

erfüllt. Diese Matrizen stellen Spiegelungen, Drehungen und Drehspiegelungen dar.

Unitäre Matrizen

Sie sind das komplexe Gegenstück zu den orthogonalen Matrizen. Eine komplexe Matrix   ist unitär, wenn die zugehörige Transformation die Normierung erhält, das heißt, wenn

 

gilt. Diese Bedingung ist äquivalent dazu, dass   die Gleichung

 

erfüllt; dabei bezeichnet   die konjugiert-transponierte Matrix zu   Fasst man den  -dimensionalen komplexen Vektorraum als  -dimensionalen reellen Vektorraum auf, so entsprechen die unitären Matrizen genau denjenigen orthogonalen Matrizen, die mit der Multiplikation mit   vertauschen.

Projektionsmatrizen

Eine Matrix ist eine Projektionsmatrix, falls

 

gilt, sie also idempotent ist: Das heißt, die mehrfache Anwendung einer Projektionsmatrix auf einen Vektor lässt das Resultat unverändert. Eine idempotente Matrix hat keinen vollen Rang, es sei denn, sie ist die Einheitsmatrix. Geometrisch entsprechen Projektionsmatrizen der Parallelprojektion entlang des Nullraumes der Matrix. Steht der Nullraum senkrecht auf dem Bildraum, so erhält man eine Orthogonalprojektion.
Beispiel: Es sei   eine  -Matrix und damit selbst nicht invertierbar. Falls der Rang von   gleich   ist, dann ist   invertierbar und die  -Matrix

 

idempotent. Diese Matrix wird beispielsweise in der Methode der kleinsten Quadrate verwendet.

Nilpotente Matrizen

Eine Matrix   heißt nilpotent, falls eine Potenz   (und damit auch jede höhere Potenz) die Nullmatrix ergibt.

Eigenschaften von Bilinearformen

Bearbeiten

Im Folgenden sind Eigenschaften von Matrizen aufgelistet, die Eigenschaften der zugehörigen Bilinearform

 

entsprechen. Trotzdem können diese Eigenschaften für die dargestellten Endomorphismen eine eigenständige Bedeutung besitzen.

Symmetrische Matrizen

Eine Matrix   heißt symmetrisch, wenn sie gleich ihrer transponierten Matrix ist:

 

Anschaulich gesprochen sind die Elemente symmetrischer Matrizen symmetrisch zur Hauptdiagonalen. Beispiel:

 

Symmetrische Matrizen entsprechen einerseits symmetrischen Bilinearformen:

 

andererseits den selbstadjungierten linearen Abbildungen:

 
Hermitesche Matrizen

Hermitesche Matrizen sind das komplexe Analogon der symmetrischen Matrizen. Sie entsprechen den hermiteschen Sesquilinearformen und den selbstadjungierten Endomorphismen.
Eine Matrix   ist hermitesch oder selbstadjungiert, wenn gilt:

 
Schiefsymmetrische Matrizen

Eine Matrix   heißt schiefsymmetrisch oder antisymmetrisch, wenn gilt:

 

Um diese Bedingung zu erfüllen, müssen alle Elemente der Hauptdiagonale den Wert Null haben; die restlichen Werte werden an der Hauptdiagonale gespiegelt und mit   multipliziert.
Beispiel:

 

Schiefsymmetrische Matrizen entsprechen antisymmetrischen Bilinearformen:

 

und antiselbstadjungierten Endomorphismen:

 
Positiv definite Matrizen

Eine reelle Matrix ist positiv definit, wenn die zugehörige Bilinearform positiv definit ist, das heißt, wenn für alle Vektoren   gilt:

 

Positiv definite Matrizen definieren verallgemeinerte Skalarprodukte. Hat die Bilinearform keine negativen Werte, heißt die Matrix positiv semidefinit. Analog kann eine Matrix negativ definit beziehungsweise negativ semidefinit heißen, wenn die obige Bilinearform nur negative beziehungsweise keine positiven Werte hat. Matrizen, die keine dieser Eigenschaften erfüllen, heißen indefinit.

Weitere Konstruktionen

Bearbeiten
Konjugierte und adjungierte Matrix

Enthält eine Matrix komplexe Zahlen, erhält man die konjugierte Matrix, indem man ihre Komponenten durch die konjugiert komplexen Elemente ersetzt. Die adjungierte Matrix (auch hermitesch konjugierte Matrix) einer Matrix   wird mit   bezeichnet und entspricht der transponierten Matrix, bei der zusätzlich alle Elemente komplex konjugiert werden.

Adjunkte oder komplementäre Matrix

Die komplementäre Matrix   einer quadratischen Matrix   setzt sich aus deren Unterdeterminanten zusammen, wobei eine Unterdeterminante Minor genannt wird. Für die Ermittlung der Unterdeterminanten   werden die  -te Zeile und  -te Spalte von   gestrichen. Aus der resultierenden  -Matrix wird dann die Determinante   berechnet. Die komplementäre Matrix hat dann die Elemente   Diese Matrix wird manchmal auch als Matrix der Kofaktoren bezeichnet.
Man verwendet die komplementäre Matrix beispielsweise zur Berechnung der Inversen einer Matrix  , denn nach dem Laplaceschen Entwicklungssatz gilt:

 

Damit ist die Inverse   wenn  

Übergangs- oder stochastische Matrizen

Eine Übergangs- oder stochastische Matrix ist eine Matrix, deren Elemente alle zwischen 0 und 1 liegen und deren Zeilen- oder Spaltensummen 1 ergeben. Sie dienen in der Stochastik zur Charakterisierung zeitlich diskreter Markow-Ketten mit endlichem Zustandsraum. Ein Spezialfall hiervon sind die doppelt-stochastischen Matrizen, bei denen Zeilen- und Spaltensummen 1 ergeben.

Unendlichdimensionale Räume

Bearbeiten

Für unendlichdimensionale Vektorräume (sogar über Schiefkörpern) gilt, dass jede lineare Abbildung   eindeutig durch die Bilder   der Elemente   einer Basis   bestimmt ist und diese beliebig gewählt werden und zu einer linearen Abbildung auf ganz   fortgesetzt werden können. Ist nun   eine Basis von  , so lässt sich   eindeutig als (endliche) Linearkombination von Basisvektoren schreiben, d. h., es existieren eindeutige Koeffizienten   für  , von denen nur endlich viele von null verschieden sind, sodass  . Dementsprechend lässt sich jede lineare Abbildung als möglicherweise unendliche Matrix auffassen, wobei jedoch in jeder Spalte (  „nummeriere“ die Spalten und die Spalte zu   bestehe dann aus den von den Elementen von   nummerierten Koordinaten  ) nur endlich viele Elemente von null verschieden sind, und umgekehrt. Die entsprechend definierte Matrixmultiplikation entspricht wiederum der Komposition linearer Abbildungen.

In der Funktionalanalysis betrachtet man topologische Vektorräume, d. h. Vektorräume, auf denen man von Konvergenz sprechen und dementsprechend unendliche Summen bilden kann. Auf solchen können Matrizen mit unendlich vielen von null verschiedenen Elementen in einer Spalte unter Umständen als lineare Abbildungen verstanden werden, wobei auch andere Basis-Begriffe zugrunde liegen.

Einen speziellen Fall bilden Hilberträume. Seien also   Hilberträume und   Orthonormalbasen von   bzw.  . Dann erhält man eine Matrixdarstellung eines linearen Operators   (für lediglich dicht definierte Operatoren funktioniert es ebenso, falls der Definitionsbereich eine Orthonormalbasis besitzt, was im abzählbardimensionalen Fall stets zutrifft), indem man die Matrixelemente   definiert; dabei ist   das Skalarprodukt im betrachteten Hilbertraum (im komplexen Fall semilinear im ersten Argument).

Dieses sogenannte Hilbert-Schmidt-Skalarprodukt lässt sich im unendlichdimensionalen Fall nur noch für eine bestimmte Teilklasse von linearen Operatoren, die sogenannten Hilbert-Schmidt-Operatoren, definieren, bei denen die Reihe, über die dieses Skalarprodukt definiert ist, stets konvergiert.

Matrizen in „klassischen“ Programmiersprachen

Bearbeiten

Matrizen können in den meisten höheren Programmiersprachen deklariert und gespeichert werden. Eine Matrix wird in Programmiersprachen in einer Datenstruktur-Variante gespeichert, die in der deutschsprachigen Fachliteratur meist Datenfeld oder kurz Feld (englisch array) genannt wird.[11] Das Feld erhält einen Feldnamen, für den in den Beispielen FeldX gewählt wurde. Der Zugriff auf bestimmte Inhalte eines Felds erfolgt mit Hilfe von Indizes, die dessen Position bezeichnen. Bei mehrdimensionalen Feldern gibt es für jede Dimension einen Index.[12] Alle Elemente eines Felds haben in der Regel den gleichen Datentyp, sind also zum Beispiel alle entweder ganze Zahlen, natürliche Zahlen oder Gleitkommazahlen. In Computeralgebrasystemen können es auch symbolische Ausdrücke (wie Variable, Funktionen oder Polynome) sein.

Beim Deklarieren werden Felder in einer sprachspezifischen Syntax formuliert. Beispiele:

  • REAL*8 FeldX(100,...) (Schlüsselwort REAL*8 mit Angabe der 8 Bytes für den Datentyp Gleitkommazahl, Feldname, Anzahl der Feldelemente je Dimension in runden Klammern): Fortran
  • Dim FeldX (100,...) As Double (Schlüsselwort Dim, Feldname, Anzahl der Feldelemente je Dimension in runden Klammern, Datentyp Gleitkommazahl doppelter Länge): Visual Basic, Visual Basic for Applications und Visual Basic Script
  • FeldX (100) (Feldname, Anzahl der Feldelemente in runden Klammern): PL/I
  • FeldX [100,...] (Feldname, Anzahl der Feldelemente je Dimension in eckigen Klammern): C#[13]
  • FeldX [100][][] (Feldname, Anzahl der Feldelemente je Dimension, jeweils in gesonderten eckigen Klammern): C/C++,[14] Java[15]
  • FeldX array (100) (Feldname, Schlüsselwort array, Anzahl der Feldelemente in runden Klammern): Modula-2
  • FeldX occurs 100. (Feldname, Schlüsselwort occurs, Anzahl der Feldelemente ohne Klammern): Cobol

Die so deklarierten „Platzhalter“ werden in dem jeweiligen Programm mit „Werten“ befüllt. Matrizenmanipulationen muss der Anwender selbst programmieren.

Matrizen in Tabellenkalkulationen

Bearbeiten

Eine Tabellenkalkulation (englisch Spreadsheet) ist eine Software zur interaktiven Eingabe und Bearbeitung von numerischen und alphanumerischen Daten in Form einer Tabelle. Wer mit der Matrizenrechnung vertraut ist und sich dann in eine Tabellenkalkulation einarbeitet, findet zunächst etwas Vertrautes vor: Das Tabellenblatt, die regelmäßige Unterteilung einer Fläche in Kästchen, die hier nicht Elemente, sondern Zellen genannt werden. Eine Zelle wird ebenfalls durch „Koordinaten“ adressiert, durch die Spalte und die Zeile in der sie sie sich befindet. Hier endet das Vertraute. Die Spalten werden üblicherweise mit Buchstaben oder Buchstabenfolgen, die Zeilen mit Zahlen festgelegt. Die Reihenfolge ist vertauscht: Spalte zuerst, dann die Zeile. Die Adresse B3 ist also die Zelle in der zweiten Spalte und der dritten Zeile. Ein rechteckiger Bereich von Zellen wird durch die Adressen der Zellen in der linken oberen Ecke und in der rechten unteren Ecke festgelegt, durch ein bis-Zeichen, etwa einen Doppelpunkt (:), getrennt. Zum Beispiel adressiert B3:D5 einen quadratischen Zellenbereich mit drei Zeilen und drei Spalten. Einem solchen Zellenbereich kann auch ein Name zugeordnet werden, zum Beispiel der Name FeldX.

Jede Tabellenkalkulation enthält eine Vielzahl von Funktionen, die in Formeln verwendet werden.

Matrizen in Tabellenkalkulationsprogrammen

Bearbeiten
 
Screenshot der Tabellenkalkulation Excel mit Matrixfunktionen

In Microsoft Excel und dem freien LibreOffice Calc kann jeder rechteckige Bereich, der Zahlen enthält, als Matrix interpretiert werden. Eine Matrix kann sich an beliebiger Stelle auf dem Tabellenblatt befinden. Wie in den „klassischen“ Programmiersprachen können die Matrixelemente nur Zahlen sein. Excel und Calc enthalten Funktionen speziell für Matrizen. Bei Excel (Calc) sind dies die folgenden Funktionen:

Der Screenshot zeigt ein Beispiel für eine Matrix, das Produkt der Matrix mit sich selbst, ihre inverse Matrix und ihre Determinante. Mit der inversen Matrix kann auch ein lineares Gleichungssystem kompakt gelöst werden.

Die Formel muss als Matrixformel eingegeben werden, damit sie richtig funktioniert. Nach Eingabe der Formel muss bei der Version Microsoft 365 die EINGABETASTE gedrückt werden, ansonsten die Tastenkombination STRG+UMSCHALT+EINGABETASTE.[16]

In beiden Tabellenkalkulationen gibt es Programmiersprachen, mit denen den Matrixelementen Werte zugewiesen werden können, wie in anderen „klassischen“ Programmiersprachen auch. Es gibt aber noch eine weitere Möglichkeit, die es dort nicht gibt. Die Werte für die Matrixelemente können auch von einem Tabellenblatt gelesen und nach der Ausführung einer Berechnung auf ein Tabellenblatt geschrieben werden. Dies kann helfen, den Berechnungsvorgang transparenter zu machen.

Matrizen in Computeralgebrasystemen

Bearbeiten

Ein Computeralgebrasystem ist ein Computerprogramm, das vorrangig der Bearbeitung algebraischer Ausdrücke dient. Es löst nicht nur mathematische Aufgaben mit Zahlen (wie die „klassischen“ Programmiersprachen oder ein einfacher Taschenrechner), sondern auch solche mit symbolischen Ausdrücken (wie Variablen, Funktionen, Polynomen und Matrizen).

Matrizen in Mathematica

Bearbeiten

In Computeralgebrasysteme Mathematica[17] entfällt die separate Deklaration des Felds, das nachfolgend ebenfalls FeldX genannt wird. Die Matrixelemente können sowohl Zahlen als auch Symbole sein. Verwenden wir im nachfolgenden Beispiel Symbole. Die Matrixelemente werden in einer speziellen Syntax Zeile für Zeile eingegeben. Mit der Funktion MatrixForm wird die Matrix in der üblichen Form angezeigt. Präfixe werden von Mathematica in kleiner Schrift und in der Farbe blau ausgeschrieben (sind also keine Links). In den Klammern (* … *) stehen erläuternde Kommentare:

In[1]:= MatrixForm [FeldX={{a, b, 0}, {c, a, b}, {0, c, a}}] (* Matrixelemente eingeben *)
Out[1]//MatrixForm=
 

Für die Matrizenmultiplikation wird zwischen die Feldnamen ein schlichter Punkt (.) gesetzt.[18] Zum Beispiel für die Multiplikation des Felds FeldX mit sich selbst sieht die Syntax so aus:

In[2]:= MatrixForm [FeldX.FeldX] (* Matrix mit sich selbst multiplizieren *)
Out[2]//MatrixForm=
 

Mathematica enthält eine Vielzahl von Funktionen, um Matrizen zu erzeugen, etwa eine Hilbert-Matrix oder eine Hankel-Matrix, und solche, um Matrizen zu manipulieren, zum Beispiel auch exotische, wie die, die einer Matrix Zeilen/Spalten oder den Teil oberhalb/unterhalb der Diagonalen entnehmen.

Matrizen in Maple

Bearbeiten

In der Computeralgebrasystem Maple wird eine Matrix als zweidimensionales Datenfeld mit Zeilen- und Spaltenindizes dargestellt, die von 1 aus indiziert werden. Matrizen können entweder direkt als zweidimensionales Datenfeld mit dem Befehl array oder mit dem Befehl matrix des Pakets für lineare Algebra linalg eingegeben werden. Das Pakets für lineare Algebra ist speziell für das Rechnen mit Vektoren und Matrizen bestimmt. Beispielsweise erstellt der Befehl array(1..m,1..n) eine leere (m x n)-Matrix und der Befehl array(1..10,1..10,identity) eine (10 x 10)-Einheitsmatrix. Spezielle Funktionen erlauben es, bestimmte Eigenschaften der Matrix abzufragen: Ist die Matrix symmetrisch, antisymmetrisch, diagonal, dünn besetzt? Das Paket für lineare Algebra enthält außerdem eine Reihe von Befehlen, um spezielle Matrizen zu erzeugen, zum Beispiel eine Bezout-, Hilbert-, Jacobi-, Sylvester-, Toeplitz- oder Vandermonde-Matrix.

Die Syntax von Maple ist benutzerfreundlich. Die Eingabe eines Befehls wird mit der Taste Enter abgeschlossen und nicht, wie im Fall von Mathematica, mit der Tastenkombination Shift+Enter. Hier drei Eingabemöglichkeiten einer Matrix in Maple:

> FeldX:=array([[a,b,0],[c,a,b],[0,c,a]]);

oder

> FeldX:=array(1..3,1..3,[[a,b,0], [c,a,b], [0,c,a]]);

oder

> FeldX:=linalg[matrix](3,3,[a,b,0, c,a,b, 0,c,a]);

Die Ausschrift nach Drücken der Taste Enter ist für alle drei Eingabevarianten gleich:

 

Für die Multiplikation des Felds FeldX mit sich selbst sieht die Syntax so aus:

> evalm(FeldX &* FeldX);

Das Ergebnis ist

 

Der Befehl evalm interpretiert den Operator &* als den Matrixmultiplikationsoperator.[19]

Matrizen in Mathcad

Bearbeiten
 
Screenshot des Computeralgebrasystems Mathcad mit Matrizenoperationen und der Symbolleiste Matrix und dem Dialogfeld Matrix einfügen

Mathcad ist ein kommerzielles Computeralgebrasystem, das ursprünglich von der Firma Mathsoft für rein numerische Berechnungen entwickelt wurde. Für symbolische Berechnungen wird seit der Version 3 (1991) eine Minimalvariante des Computeralgebrasystems Maple verwendet. Die Stärke von Mathcad liegt darin, dass die Eingabe von Formeln, der Arbeitsablauf und die Dokumentation dem normalen Arbeitsablauf von Technikern, Wirtschafts- und Naturwissenschaftlern angepasst wurden. So gibt es zum Beispiel für Matrizen eine eigene Symbolleiste mit einer Matrixschablone (Platzhalter), so dass keine programmspezifische Syntax für die Eingabe von Matrizen erlernt werden muss, wie dies bei den Programmen Mathematica und Maple der Fall ist. Auch das Erlernen einer Programmiersprache ist nicht erforderlich.

Die Symbolleiste Matrix von Mathcad vereinfacht außerdem

  • den Zugriff auf ein bestimmtes Matrixelement oder auf eine Matrixspalte,
  • die Eingabe zur Berechnung der Transponierten, der Inversen oder der Determinante der Matrix und
  • die Eingabe zur Berechnung des Skalar- oder Vektorprodukts zweier Vektoren.

Eine Besonderheit aus physikalischer Sicht ist, dass Mathcad Einheitensysteme verwenden und umrechnen kann. Aufgrund des Kompromisses zwischen einfacher Bedienung und mathematischer Leistungsfähigkeit wird das Programm auch häufig in Schulen eingesetzt.

Matrizen in Auszeichnungssprachen

Bearbeiten

In den Auszeichnungssprachen geht es nicht darum, mit Matrizen zu rechnen, sondern sie zunächst unabhängig von ihrer grafischen Darstellung in ihrer logischen Struktur zu speichern, um sie dann wie gewohnt auf dem Bildschirm darstellen und ausdrucken zu können.

Matrizen in TeX

Bearbeiten

Die Auszeichnungssprache TeX (englisch TeX-Markup) wird unter anderem in der Wikipedia für Formeln verwendet. Die folgende Tabelle zeigt eine Matrix in dieser Auszeichnungssprache, links die Eingabe, rechts das Ergebnis nach dem Rendern:

Eingabe Ergebnis
<math>
\begin{pmatrix}
   a & b & 0 \\
   c & a & b \\
   0 & c & a
\end{pmatrix}
</math>

 

Das Tag-Paar <math> … </math> eröffnet den Math-Modus für Formeln und schließt ihn ab. \begin{pmatrix} … \end{pmatrix} kennzeichnet, dass eine Matrix dargestellt werden soll, die von runden Klammern (englisch parentheses) umschlossen ist. Der Übergang zum nächsten Matrixelemente der Zeile wird durch das Et-Zeichen & und der Zeilenwechsel durch das Zeichenpaar \\ bewirkt.

Die in der Wikipedia verwendete Syntax unterscheidet sich geringfügig von der originalen Auszeichnungssprache TeX, die für den Buchdruck gedacht ist.[20] In Letzterer sähe das Beispiel so aus:

Eingabe Ergebnis
$$
\begin{pmatrix}
   a & b & 0 \cr
   c & a & b \cr
   0 & c & a
\end{pmatrix}
$$

 

Das Tag \cr steht für den Zeilenwechsel (englisch carriage return).

Matrizen in Wikitext

Bearbeiten

Aber auch ohne den Math-Modus lassen sich in der Auszeichnungssprache Wikitext (englisch wiki markup) mittels Tabellen matrixähnliche Strukturen erzeugen, wie sie zum Beispiel im Artikel Falksches Schema für die Matrizenmultiplikation verwendet werden. Die folgende Tabelle zeigt eine einfache Tabelle in der Auszeichnungssprache Wikitext:

Eingabe Ergebnis
{| class="wikitable"
| a || b || 0
|-
| c || a || b
|-
| 0 || c || a
|}
a b 0
c a b
0 c a

In dieser Auszeichnungssprache werden andere Zeichen für das Springen von Zelle zu Zelle (Element zu Element) und für den Zeilenumbruch verwendet als im Math-Modus. Dies zeigt, dass die verwendeten Zeichen keiner tieferen Logik folgen, sondern auf die Intentionen der ursprünglichen Entwickler zurückgehen.

Matrizen in MathML

Bearbeiten

Die Mathematical Markup Language (MathML) ist eine weitere Auszeichnungssprache zur Darstellung mathematischer Formeln. Sie gehört zur Familie der XML-Sprachen. MathML wurde ursprünglich als universelle Spezifikation für Browser, Office-Suiten, Computeralgebrasysteme, EPUB-Reader und LaTeX-basierte Generatoren entwickelt. Die Matrix des Beispiels wird in MathML in folgender Syntax formuliert:

Eingabe Ergebnis
<mrow>
  <mo> ( </mo>
  <mtable>
    <mtr>
      <mtd> <mn>a</mn> </mtd> <mtd> <mn>b</mn> </mtd> <mtd> <mn>0</mn> </mtd>
    </mtr>
    <mtr>
      <mtd> <mn>c</mn> </mtd> <mtd> <mn>a</mn> </mtd> <mtd> <mn>b</mn> </mtd>
    </mtr>
    <mtr>
      <mtd> <mn>0</mn> </mtd> <mtd> <mn>c</mn> </mtd> <mtd> <mn>a</mn> </mtd>
    </mtr>
  </mtable>
  <mo> ) </mo>
</mrow>

 

Die Bedeutung der Tags dürfte selbsterklärend sein. Browser wie Firefox und Safari unterstützten eine Teilmenge von MathML, das sogenannte MathML Core.[21][22]

Literatur

Bearbeiten
  • Maxime Bôcher: Einführung in die höhere Algebra. Teubner, Leipzig 1925 (XII, 348 S.).
  • Ewald Bodewig: Matrix calculus. 2nd, revised and enlanged edition Auflage. North-Holland Pub. Co., Amsterdam 1959, ISBN 978-1-4832-7498-0 (452 S.).
  • Richard Bellman: Introduction to matrix algebra. McGraw, New York 1960 (328 S.).
  • Rudolf Kochendörffer: Determinanten und Matrizen. 2. Auflage. B. G. Teubner, Leipzig 1961 (VI, 144 S.).
  • Lothar Collatz: Eigenwertaufgaben mit technischen Anwendungen. 2., durchges. Auflage. Akad. Verl.-Ges. Geest & Portig, Leipzig 1963 (XIV, 500 S.).
  • Alston S. Householder: The Theory of Matrices in Numerical Analysis. Dover Publications Inc., New York, NY 1964, ISBN 0-486-61781-5 (xi, 257 S.).
    The theory of matrices in numerical analysis. Dover edition Auflage. Dover Publications, Mineola N.Y. 2006, ISBN 0-486-44972-6 (xi, 257 S., eingeschränkte Vorschau in der Google-Buchsuche).
    Die Zahlen, aus denen sich die Matrix zusammensetzt, werden von Householder element/elements genannt, die Namen entry/entries verwendet er nicht.
  • Rudolf Zurmühl: Matrizen und ihre technischen Anwendungen. 4., neubearbeite Auflage. Springer, Berlin/Göttingen/Heidelberg 1964 (XII, 452 S.).
  • Fritz Neiss: Determinanten und Matrizen. 7. Auflage. Springer, Berlin/Heidelberg 1967, ISBN 978-3-662-00943-7 (VII, 111 S.).
  • Rudolf Zurmühl, Sigurd Falk: Matrizen und Ihre Anwendungen. 7., Softcover reprint of the original 7th ed. 1997. Springer, Berlin / Heidelberg / New York 2013, ISBN 978-3-642-63821-3 (XIV, 496 S.).
  • Hermann Schichl, Roland Steinbauer: Einführung in das mathematische Arbeiten. 3., überarb. Auflage 2018. Springer, Berlin/Heidelberg 2018, ISBN 978-3-662-56806-4 (xvii, 531 S., eingeschränkte Vorschau in der Google-Buchsuche).
Bearbeiten
Wiktionary: Matrix – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Commons: Matrix – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise und Anmerkungen

Bearbeiten
  1. Latein.me
  2. James Joseph Sylvester: Additions to the articles in the September number of this journal, “On a new class of theorems,” and on Pascal’s theorem. In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. Nr. 37, 1850, S. 363–370 (Volltext).
  3. Eric W. Weisstein: Hypermatrix. In: MathWorld (englisch).
  4. Walter Gellert, Herbert Kästner, Siegfried Neubert (Hrsg.): Lexikon der Mathematik. 1. Auflage. Bibliographisches Institut, Leipzig 1977, S. 350 (624 S.).
  5. a b Guido Walz (Hrsg.): Lexikon der Mathematik - Band 3. Springer/Spektrum, 2-te Auflage 2017, S. 385.
  6. Der Name Element ist der seit über hundert Jahren in der deutschen Fachliteratur etablierte Name. So ist im Gantmacher auf S. 19 zu lesen: „Die Zahlen, aus denen sich die Matrix zusammensetzt, werden ihre Elemente genannt.“
  7. Den Namen Eintrag verwenden z. B. Schichl und Steinbauer auf S. 26. und Fischer auf S. 21. Bei Beutelspacher auf S. 63 findet sich die folgende Stelle, die illustriert, warum Autoren, vermutlich aus sprachlichen Gründen, inzwischen Eintrag bevorzugen: „Eine m × n-Matrix über dem Körper K ist ein rechteckiges Schema aus m Zeilen und n Spalten, deren Einträge Elemente aus K sind.“ Das Wort Eintrag ermöglicht hier, die sprachlich unschöne und konzeptionell verwirrende Doppelung des Wortes Element zu vermeiden, es sei denn, man benutzt das Wort Matrixelement anstelle von Eintrag. Im Englischen wird das dem Wort Eintrag entsprechende Entry häufig verwendet. Eintrag hat sich insbesondere seit dem Erscheinen der Übersetzung des Lehrbuchs von Gilbert Strang im Jahr 2003 auch im Deutschen verbreitet.
  8. Dmitrij K. Faddejew, Wera N. Faddejewa, 1978, S. 48.
  9. Adalbert Duschek, August Hochrainer: Grundzüge der Tensorrechnung in analytischer Darstellung. Springer, Wien 1955, S. 48 (VI, 250).
  10. Walter Gellert, Herbert Kästner, Siegfried Neubert (Hrsg.): Lexikon der Mathematik. 1. Auflage. Bibliographisches Institut, Leipzig 1977, S. 350, 570 (624 S.).
  11. Heidrun Kolinsky: Kapitel 9: Datenfelder (engl. arrays) oder indizierte Variablen. In: Programmieren in Fortran 90/95. Universität der Bundeswehr München, abgerufen am 12. März 2023.
  12. Der Name Dimension wird in diesem Zusammenhang für die Anzahl der Indizes verwendet: Ein Vektor ist folglich ein eindimensionales Feld, eine Matrix mit zwei Indizes ein zweidimensionales Feld usw.
  13. msdn.microsoft.com Microsoft
  14. www2.informatik.uni-halle.de (Memento vom 29. April 2015 im Internet Archive) Uni Halle
  15. homeandlearn.co.uk Java
  16. MMULT (Funktion)
  17. Stephen Wolfram: The mathematica book: Version 4. Wolfram Media; Cambridge University Press, Champaign IL, New York 1999, ISBN 1-57955-004-5 (xxvi, 1470 S.).
  18. Das übliche Malzeichen, das Sternchen * der Tabellenkalkulations-Programme und Programmiersprachen, bewirkt die elementweise Multiplikation.
  19. M. B. Monagan et al.: Maple 6: Programming Guide. Waterloo Maple Inc., Waterloo, Ont. 2000, ISBN 1-894511-01-8, S. 168 (586 S.).
  20. Donald Ervin Knuth, Donald E. Knuth: The TEXbook. 14. Auflage. Addison-Wesley, Reading, Mass. 1988, ISBN 0-201-13448-9, S. 176 ff. (483 S.).
  21. Math ML. mozilla developer center, abgerufen am 31. März 2023.
  22. MathML in Safari