Drehfunkfeuer

Navigationstechnik
(Weitergeleitet von Radial (Luftfahrt))

Ein Drehfunkfeuer (englische Abkürzung VOR [ˌviːˌəʊˈɑː) ist ein Funkfeuer für die Luftfahrtnavigation. Es sendet ein spezielles UKW-Funksignal aus, dem ein Empfänger im Flugzeug die Richtung zum Funkfeuer entnehmen kann. Das Flugzeug benötigt keine Peilanlage dafür, da die Richtungsinformation vom Sender in das Signal kodiert wird. Die Abkürzung VOR steht für VHF omnidirectional range.[1]

Doppler-VOR-Bodenstation (D-VOR) in Verbindung mit einem DME. Standort Peking (PEK)
VOR auf der US-Sichtflugkarte (Sectional Aeronautical Chart). Deutlich ist zu sehen, dass das VOR nicht auf die geographische, sondern auf die magnetische Nordrichtung ausgerichtet ist.

Das eigentliche VOR ist die Bodenstation, deren Signal vom VOR-Empfänger im Flugzeug ausgewertet und als Richtungsinformation auf einem Anzeigegerät abgelesen werden kann. Vereinfachend wird jedoch auch der Empfänger als VOR bezeichnet.

Kenntnisse in der Navigation nach VOR werden unter anderem in der Prüfung zur Erteilung eines Flugfunkzeugnisses verlangt.[2]

Entwicklung

Bearbeiten

VOR (VHF-Omnidirectional-Range, dt. Drehfunkfeuer) ist ein Funkortungsverfahren das gepaart mit einem DME (Distance Measuring Equipment, dt. Entfernungsmessgerät) weltweit für Rho-Theta Navigation für Kurz- und Mittelstrecken in der zivilen Luftfahrt dient.[3]

Rho (griechischer Buchstabe ρ) steht als Synonym für Slant-Range-Distance Messung (dt. Schrägentfernungs Messung), welche durch Laufzeitmessung zwischen Aussendung der Abfrage an und dem Empfang der Antwort einer DME Bodenstation gemessen wird.

Theta (Greek θ) steht für den Azimut (Heading, Direction oder Bearing) vom VOR Drehfunkfeuer Bodenstation bezogen auf magnetisch Nord. Bei Nutzung von Rho/Theta Navigation einer VOR/DME Anlage ist damit jeder Punkt innerhalb des für eine VOR/DME Anlage betrieblich festgelegten DOC (Designated Operational Coverage) durch Azimut und Entfernung eindeutig bestimmbar und erlaubt dem Piloten damit Area Navigation (dt. Flächennavigation)

VOR-Anlagen am Boden liefern den Luftfahrzeugführern (Piloten) die Azimut-Informationen des Luftfahrzeuges in Form eines Radials (dt. Standlinie) und wird mit der Angabe to/from (dt. zu/von) zur VOR-Anlage dem Piloten auf einem mechanischen Zeigerinstrument oder einem elektronischen Äquivalent angezeigt. To/from identifiziert dabei ob das Luftfahrzeug auf eine VOR zu- oder von dieser weg-fliegt. Eine VOR kann von beliebig vielen Luftfahrzeugen genutzt werden.

VOR und DME wurden für die U.S CAA (Civil Aeronautics Authority) entwickelt und 1949 in Betrieb genommen.[4],[5],[6] Seit 1950 sind VOR und DME sind als Standard Short Range Air Navigation Systems (dt. Standard Flugnavigationssysteme) für Slant-Range-Reichweiten (Schrägentfernungs-Reichweiten) bis zu 200 NM (Nautical Miles, entspricht 370 km, wobei 1 NM = 1,852 km) von der ICAO (International Civil Aviation Organization) im ICAO Annex 10 (Anhang 10) standardisiert.[7]

VOR werden im Bereich von 108,00 bis 117,95 MHz (siehe auch Abschnitt Frequenzen) betrieben der von der ITU (en. International Telecommunication Union) weltweit exklusiv dem ARNS (Aeronautical Radio Navigation Service, dt. Flugnavigationsfunkdienst) für die ICAO Standard Systeme VOR, ILS-LLZ (Instrument Landing System Localizer) und GBAS (Ground Based Augmentation System) zuwiesen wurde.[8]

An Standorten die auch für militärische Luftfahrt benötigt werden kann anstelle einer DME/N da dessen technische Parameter auf dem TACAN System basiert. Das derzeit von ICAO standardisierte DME/N System unterscheidet sich in den technische Parametern von dem in 1950 standardisierten ersten DME-System. Daher kann anstelle einer DME/N auch eine TACAN (Tactical Air Navigation Anlage) genutzt werden sofern diese die ICAO Vorgaben für DME/N in ICAO Annex 10 erfüllt.[7] Für Luftfahrzeuge der militärischen Luftfahrt, die in der Regel nicht mit VOR Empfängern ausgestattet sind, bietet das TACAN System zusätzlich die Azimut Information.

Für Standorte die für die Ausbreitung elektromagnetischer Wellen schlecht geeignet sind, z. B. wegen reflektierender Objekte oder schlechter Geländetopographie, wurde ab 1959 das DVOR (Doppler-VOR) System entwickelt, das auch an schwierigen Standorten eine Nutzung erlaubt.[9],[10]

Die von DVOR abgestrahlten Signale sind kompatibel zu VOR und erfüllen die gleichen Vorgaben die ICAO in Annex 10 an VOR stellt.[7] DVOR Anlagen erfordern jedoch einen höheren technischen Aufwand. Dies betrifft sowohl die Sender, als auch die Anzahl der Antennen. Eine DVOR Antennen-System besteht aus bis zu 51 Einzelantennen die auf einem Counter Poise (CP, dt. Gegengewicht) von ca. 30 m bis zu 45 m Durchmesser in Höhen von minimal 3 m bis über 40 m AGL (Above Ground Level, dt. über Geländehöhe) betrieben werden.

Funktionsprinzip

Bearbeiten

Die Besonderheit des VOR gegenüber einfachen (ungerichteten) Funkfeuern liegt darin, dass der Empfänger dem empfangenen Signal „ansieht“, aus welcher Richtung es kommt; es sieht aus einer anderen Richtung auch anders aus. Um darzustellen, wie das technisch erreicht wird, zunächst ein kleines Gedankenexperiment:

Analogie zum Leuchtturm

Bearbeiten
 
Veranschaulichung des technischen Prinzips eines VOR. Aus dem Phasenversatz zwischen dem ungerichteten (grün) und dem rotierenden (blau) Signal kann das Flugzeug seine Richtung relativ zum Sender (hier 105°) bestimmen

Die Grafik rechts zeigt einen Leuchtturm, der folgende Lichtsignale aussendet:

  • ein Lichtsignal von blauer Farbe, das als stark gebündelter Strahl im Uhrzeigersinn rotiert und
  • ein zweites, rundum abstrahlendes Lichtsignal von grüner Farbe, das immer dann kurz aufleuchtet, wenn der rotierende blaue Strahl genau nach Norden weist.

Ein Beobachter an beliebiger Position sieht pro Umdrehung einen grünen und einen blauen Lichtblitz. Aus deren Phasenversatz ergibt sich direkt die Himmelsrichtung zum Leuchtturm: Sieht er sie gleichzeitig, steht er nördlich des Leuchtturms; sieht er sie genau abwechselnd, steht er südlich.

Dieser Vergleich ist nur eine Modellvorstellung, um darzustellen, wie die Richtungsinformation in das Signal kodiert wird. Beim VOR wird dieses Prinzip, technisch aufwendiger und präziser, mit Radiowellen umgesetzt.

Die Sendeanlage erzeugt ein komplexes Signal, bestehend aus:

  1. einer gerichteten, sich mit 30 Umdrehungen pro Sekunde drehenden Komponente. Aufgrund der Richtcharakteristik der Sendeantenne empfängt das VOR-Gerät im Flugzeug ein Signal, dessen Amplitude sich 30 Mal pro Sekunde hebt und senkt – eine 30 Hz-Amplitudenmodulation.[11] Nr.3.3.5.1. b) 1)
  2. einer ungerichteten Komponente, ebenfalls mit 30 Hz moduliert (30 Hz-Frequenzmodulation eines 9960 Hz-Unterträgers);[11] Nr.3.3.5.1. a) 1)
  3. einer Morse-Kennung mit einem 1020 Hz Ton;[11] Nr.3.3.6.5
  4. (optional) einem Audiokanal. VOR-Sender in der Nähe von großen Verkehrsflugplätzen strahlen teilweise die aktuellen Anfluginformationen (ATIS) des Flugplatzes aus.[11] Nr.3.3.5.1.

Im Empfänger wird der Phasenunterschied (0 … 360°) zwischen den beiden 30 Hz-Modulationen gemessen und als Radial (Azimutwinkel 0 … 360°) interpretiert. Das Radial entspricht i. d. R. der missweisenden Richtung von der VOR-Station zum Flugzeug.

Beispiel: Befindet sich das Flugzeug östlich (90°) des VOR, so beträgt die Phasendifferenz zwischen dem gerichteten und dem ungerichteten Signal 90°. Die Spitze der Anzeigenadel des Radiokompasses (RMI Radio Magnetic Indicator) zeigt auf den Winkelwert 270°, denn das VOR steht westlich. Bei einer Position westlich des VOR (270°) beträgt die Phasendifferenz 270°. Die Spitze der Anzeigenadel des Radiokompasses zeigt auf den Winkelwert 90°, denn das VOR steht östlich des Flugzeugs.

DVOR (Doppler-VOR)

Bearbeiten

DVOR ist eine Abkürzung für Doppler Very High Frequency Omnidirectional Radio Range = Doppler-UKW-Drehfunkfeuer. Solche Anlagen erzeugen ein äquivalentes Signal auf andere technische Weise mit höherer Präzision.

Im Gegensatz zum herkömmlichen VOR wird beim DVOR die 30 Hz-AM-Komponente (Amplitudenmodulation) von einer stationären Rundstrahlantenne gesendet, jetzt als Bezugssignal, während der 9960 Hz-Unterträger durch schnelles Weiterschalten zwischen einer Vielzahl von Antennen (ca. 50, immer eine gerade Zahl), die auf einem Kreis mit 13,5 m Durchmesser angeordnet sind, abgestrahlt wird. Dadurch wird eine nahezu kontinuierliche Kreisbewegung des Unterträgers entgegen dem Uhrzeigersinn nachgebildet. Im Empfänger verursacht die Bewegung des Strahlungszentrums durch den Doppler-Effekt eine 30 Hz-Frequenzmodulation mit einem Frequenzhub von ± 480 Hz, deren Phase relativ zum Bezugssignal richtungsabhängig ist (Umlaufsignal).

Beim herkömmlichen VOR wird das Referenzsignal als 30 Hz FM-moduliert von einer stationären Antenne ausgestrahlt; das variable Signal wird als 30 Hz AM von einer rotierenden Richtantenne erzeugt. Beim DVOR sind die Rollen von Referenz- und variablem Signal genau umgekehrt: das Referenzsignal ist 30 Hz AM von einer stationären Rundstrahlantenne und das variable Signal, 30 Hz FM, wird durch den Doppler-Effekt des umlaufenden Strahlungszentrums erzeugt. Weil Referenzsignal und variables Signal des DVOR gegenüber dem herkömmlichen VOR vertauscht sind, läuft das Signal auf der Kreisgruppenantenne entgegen dem Uhrzeigersinn.

Ein DVOR-Sender erreicht im Vergleich zum herkömmlichen VOR die zwei- bis dreifache Genauigkeit: Beim DVOR übersteigt der Radialfehler selten einen Wert von 1°, während er beim gewöhnlichen VOR bis zu 2,5° betragen kann.

Beispiele

Bearbeiten

Standard-VOR

Bearbeiten

Standard-VOR werden z. T. auch als CVOR (Conventional VOR) bezeichnet und beanspruchen nur Counterpoise (Gegengewicht) von ca. 5 m Durchmesser. Container VOR bestehen aus einem Container für die beiden VOR-Sender und den zugehörigen Monitor. Die Container der DFS besitzen ein ausklappbares Counterpoise und können auch vorübergehend als mobile Einheit aufgestellt und betrieben werden. Container VOR erfordern aber wie jede (D)VOR eine erfolgreiche abgeschlossene Flugvermessung für die technische und betriebliche Freigabe damit eine operative Nutzung erfolgen kann.

Mountain-VOR

Bearbeiten

Mountain VOR stellen eine Sonderform der Standard VOR dar, da die Antenne direkt auf dem Boden betrieben werden, z. B. VOR Wipper (ID "WYP"). Das Elevations Antennendiagramm unterscheidet sich von Standard VOR.

Doppler-VOR

Bearbeiten

Doppler-VOR sind deutlich größer und aufwendiger konstruiert als Standard-VOR, da sie die drehende Signalkomponente über einen Kranz einzeln angesteuerter Antennen erzeugen, der mit seinem Durchmesser von 13,5 m auch optisch auffällt. Sie stehen in der Regel dauerhaft auf umzäunten Grundstücken der Größenordnung 40 m × 40 m. Meist ist die Antennenanlage vollständig auf einer um mehrere Meter aufgeständerten, etwa 30 m durchmessenden Massefläche montiert, um die Einflüsse von Gelände und Vegetation auf die Abstrahlung gering zu halten.

Geschichte

Bearbeiten

Das erste Drehfunkfeuer war der Telefunken-Kompass-Sender (1908). Der Sender begann mit der omnidirektionalen (ungerichteten) Aussendung seiner Kennung. Nach dem Empfang des letzten Buchstabens der Kennung wurde im Empfänger eine spezielle Stoppuhr gestartet und beim Signalmaximum wieder gestoppt.

In der weiteren Entwicklung erwies es sich als vorteilhaft, das Minimum des rotierenden Signals auszuwerten, da es sehr viel genauer festgestellt werden kann als das Signalmaximum.

In Westeuropa existierten während des Ersten Weltkrieges Stationen in Tønder (damals Deutschland), List auf Sylt, Nordholz, Borkum und eine Station im westflandrischen Houtave, in der Nähe von Brügge in Flandern, Belgien. Zu diesen Richtsendeanlagen kamen zwei Anlagen in Cleve und Tønder, die ungerichtete Signale im Zeittakt ausstrahlten. Alle diese (Dreh)Funkfeuer dienten der Navigation von Luftschiffen. Flugzeuge waren noch nicht mit Empfängern für dieses System ausgerüstet.

Im Zweiten Weltkrieg wurden stark weiterentwickelte deutsche Anlagen unter der Bezeichnung Bernhard an der gesamten Westfront errichtet.

Die ersten VOR-Anlagen moderner Bauart wurden in Deutschland Anfang der 1950er Jahre in Betrieb genommen. Das Grundnetz bestand damals aus acht Stationen.

Laut dem Deutschen Funknavigationsplan (DFNP) des Bundesministeriums für Verkehr, Bau und Stadtentwicklung (BMVBS) werden die VORs und DVORs seit 2005 sukzessiv abgebaut. Laut der Deutschen Flugsicherung wird „aus Sicherheits- und Redundanzgründen“ davon ausgegangen, „dass wir auch in der Zukunft zumindest ein „Backup-Netzwerk“ an terrestrischer Infrastruktur vorhalten werden.“

 
Verschiedene Flugzeugantennen und ihre Anbringung

Frequenzen

Bearbeiten

(D)VOR-Bodenstation senden im Frequenzband 108,000 MHz bis 119,950 MHz auf Frequenzen mit 50 kHz Kanalabstand zwischen 112.000 MHz bis 117,950, sowie im Bereich 108,000 bis 111,850 MHz auf geraden 100 kHz Frequenzen (108,000 MHz, 108,050 MHz, 108,200 MHz usw.)[11] chapt.3, Table A[12] Nr. 3.1.1,, während ILS-LLZ (Instrument Landing System-Localizer, dt. ILS-Landekurssender) auf ungeraden 100 kHz Frequenzenzwischen zwischen 108,100 MHz und 111,950 MHz senden (108,100 MHz, 108,150 MHz, 108,300 MHz usw.).[12] Nr. 2.1.1,[11] chapt.3, Table A. Zusätzlich ist der Bereich 108,025 MHz bis 117,975 MHz für die Nutzung von GBAS (Ground Base Augmentation System) im 25 kHz Kanalabstand verfügbar.[12] Nr. 4.1.1 Nach erfolgreicher internationalen Frequenzkoordinierung, technischer und operativer Freigabe werden (D)VOR Anlagen unter anderem in Luftfahrtkarten und der IFR-AIP (Luftfahrthandbuch) veröffentlicht.

Azimut und Radial

Bearbeiten
 
VOR-Gradangaben – abgekürzt auf die Zehnerstellen

Das VOR-System, bestehend aus Bodensender und Bordempfänger, liefert eine Information, nämlich das Azimut des Flugzeugs vom VOR-Sender, d. h. den Winkel zwischen dem durch die Bodenstation verlaufenden (magnetischen) Meridian und der Verbindungslinie Bodenstation–Flugzeug. VOR-Sender sind i. d. R. so ausgerichtet, dass das 360°-Radial in die magnetische Nordrichtung weist (missweisend). VORs in der Nähe der magnetischen Pole mit hoher Variation sind hingegen auf den geographischen Nordpol ausgerichtet (rechtweisend).

Eine vom VOR-Sender weg gerichtete Funkstandlinie mit einem gegebenen Azimut wird als Radial bezeichnet. Für die Praxis der Flugnavigation gibt es 360 Radiale. Es wird nicht mit Dezimalstellen gearbeitet, nur mit ganzen Zahlen. Ein Radial ist also ein gerichteter Vektor (allerdings nur mit Richtungsangabe, ohne Größe) mit der Richtung vom Funkfeuer weg. Denn im Gegensatz zu einem Lichtstrahl vom Leuchtturm funkt unsere Funkstandlinie (z. B. R-040) auch noch über den Mittelpunkt hinaus in die Gegenrichtung (also Richtung 220° = 40° + 180°). In diese andere Richtung wird sie aber definitionsgemäß als R-220 bezeichnet.

Wie alle Kursangaben und Kompassangaben werden auch die Richtungsangaben der Radiale immer dreistellig geschrieben und gesprochen. Dabei werden alle drei Ziffern einzeln ausgesprochen. Die Worte Hundert oder Zehn, Zwanzig, Dreißig usw. werden dabei nicht verwendet. Beispiel: 40° ist R-040 und wird ausgesprochen: Radial Null–vier–Null. Radial 0° (also Nord) wird üblicherweise nur als R-360 (Radial drei–sechs–null) bezeichnet.

Positionsbestimmung

Bearbeiten

Eine exakte Positionsbestimmung ist mit einem VOR allein technisch nicht möglich, da es nur eine Information über die Funkstandlinie vermittelt, auf der sich die Position befindet. Die genaue Position auf dieser Standlinie muss separat bestimmt werden, entweder per Kreuzpeilung oder durch eine separate Entfernungsmessung zum VOR.

Kreuzpeilung

Bearbeiten

Bei dieser Methode wird noch ein zweites VOR angepeilt und dessen Standlinie bestimmt. Die eigene Position ergibt sich als Schnittpunkt der beiden Standlinien. Die Präzision dieser Messung ist am höchsten, wenn die beiden Standlinien rechtwinklig zueinander stehen.

DME und TACAN

Bearbeiten

Oftmals ist eine (D)VOR zusätzlich mit einer Funknavigationsanlage zur Slant Range Entfernungsmessung – mit einem DME/N oder TACAN – kombiniert. In Deutschland ist das bei etwa drei Vierteln aller Drehfunkfeuer der Fall. Das DME (Distance Measuring Equipment – Entfernungsmessgerät) im zivilen Luftfahrzeug zeigt die Slant-Range Entfernung zum DM/NE-Transponder in Nautischen Meilen (NM) an. Die Frequenzwahl des DME-Kanals erfolgt über die Einwahl der VHF Frequenz an dem ILS- oder VOR-Bediengerät, oder über das FMS (Flight Management System). Wird am Standort der (D)VOR kein DME/N oder TACAN betrieben, erfolgt keine Entfernungsanzeige. Sofern aber sich ein DME/N, TACAN, (D)VOR/DME oder (D)VOR/TAC innerhalb des RLOS des Luftfahrzeuges in Betrieb ist kann die Entfernungsanzeig die Slant-Range Entfernung zu dieser Anlage anzeigen.

Faustformel

Bearbeiten

Mit einer Stoppuhr lässt sich die Entfernung zu einem VOR auch ohne DME folgendermaßen abschätzen:

Man dreht auf einen Kurs, bei dem das VOR auf 90° oder 270° steht (fliegt also rechtwinklig zur Standlinie) und bestimmt die Zeit  , nach der sich eine bestimmte Kursablage   ergibt, zum Beispiel 2°. Die Entfernung   zum VOR ergibt sich dann unter Anwendung der Kleinwinkelnäherung zu   (  im Bogenmaß) bzw.   (  im Gradmaß).

Passende Umformung des Bruches ergibt folgende hinreichend genaue und im Kopf handhabbare Faustformel:

 

Das Ergebnis ist abhängig von der Einheit der Geschwindigkeit zu interpretieren: Geschwindigkeit in Knoten ergibt Nautische Meilen, Geschwindigkeit in km/h ergibt Kilometer. Erreicht man beispielsweise bei einer Geschwindigkeit von 80 Knoten in einer halben Minute 3° Kursablage, so beträgt die Entfernung zum VOR ungefähr

 

Das liegt weniger als fünf Prozent neben dem geometrisch errechneten Wert von:

 
 
Prinzipieller Aufbau des DOC (Designated Operational Coverage) eins (D)VOR, die für jede Anlage in der AIP veröffentlicht werden.
 
Beschränkung des DOC eines (D)VOR durch physikalische Einschränkungen, z. B. wenn sich das Luftfahrzeug außerhalb des RLOS (Radio-Line-Of-Sight) befindet, das Signal <90 µV/m ist z. B. unterhalb der MRA (Minimum Receive Altitude) und innerhalb des COS (Cone-Of-Silence, Schweigekegel), oder wenn das Signal mehrdeutig ist, d. h. im COA (Cone Of Ambiguity)

DOC und Einschränkungen durch zu schwache oder mehrdeutige VOR-Signale

Bearbeiten
 
Ein Radial führt definitionsgemäß vom VOR weg.

Das DOC (Designated Operational Coverage) ist das für jede (D)VOR Anlage in der Luftfahrthandbuch (AIP) veröffentlichte operative Nutzungsvolumen, definiert als maximal nutzbare Entfernung (Range) und Flugfläche (Flight Level, FL). Gegebenenfalls sind dies je nach Azimut auch in Höhe und Reichweite wechselnde Werte. Der Standard in ICAO Annex 10, Volume I definiert eine für die Nutzung einer (D)VOR notwendige Mindestfeldstärke (Minimum Fieldstrength) von 90 µV/m (Mikrovolt pro Meter), die innerhalb des DOC an jedem Punkt im Raum vorhanden sein muss. Aufgrund physikalischer Einschränkungen ist es jedoch unmöglich im gesamten DOC die geforderte Mindestfeldstärke zu erzeugen. Die EIRP von (D)VOR variiert in Europa zwischen ca. 50 W bis 400 W, abhängig davon welche Reichweite von einer (D)VOR benötigt wird. Zusätzlich besteht im ICAO-Standard die Forderung, das Signale von anderen (D)VOR, die die gleiche Frequenz innerhalb des Radio-Horizonts (Radio-Line-of-Sight, RLOS) des DOC nutzen im DOC um mindestens 20 dB schwächer, als die geforderte Mindestfeldstärke sein muss.[12] Nr.3.1.3, [11] Att.C Nr. 3.4

Befindet sich das Luftfahrzeug außerhalb des RLOS ist unabhängig von der Strahlungsleistung kein Signal einer (D)VOR empfangbar.

Innerhalb des RLOS, kann zwar ein Signal empfangen werden, jedoch wird aufgrund des unteren Kante der Haupkeule des Antennendiagramms die Mindestfeldstärke erst ab der MRA (Minimum Receive Altitude, dt. notwendige Mindestflughöhe zum Empfang) die zur Verarbeitung der (D)VOR Signale notwendige Mindestfeldstärke von 90 µV/m erreichen[13]Part II, Nr.1[11] Att.C Nr. 3.6 und bis zu einem Erhebungswinkel von 40° bezogen auf die (D)VOR Antennen Boresight (Luftfahrzeug bezogen auf die Antenne der (D)VOR-Anlage).[11] Kapitel 3.3.4 Die MRA kann je nach (D)VOR Antennentyp, Standort bzw. Gelände variieren.

Oberhalb von einem Erhebungswinkel von 40° kann es zu Unterschreitung der Mindestfeldstärke kommen, oder die Richtungsinformation des empfangenen Signals ist mehrdeutig.

Die Unterschreitung der geforderten Mindestfeldstärke ist darin begründet, das (D)VOR Antennen nur in einem beschränkten Elevationswinkelbereich in der Antennen-Hauptkeule die geforderte Mindestfeldstärke erzeugen kann. Oberhalb von 40 ° Erhebungswinkel, folgen dann abwechselnd Nullstellen des Antennendiagramms (Notches) und weitere im Gewinn und damit Feldstärke zunehmend schwächer werdende Antennen-Keulen (Antenna Lobes). Bei Unterschreitung der Mindestfeldstärke wird dieser Kegel generell als "Cone",[13] Part II, Nr.1 oder als COS (Cone Of Silence, dt. Schweigekegel) bezeichnet. Diese Benennung wird auch bei anderen Flugfunknavigationsanlagen, z. B. DME/N, TACAN verwendet.

Es werden mindestens zwei verschiedene Antennentypen zur Erzeugung eines VOR-Signals benötigt, z. B. ein mechanisch rotierender, verkürzter, horizontaler Dipol für die variable Phase des rotierenden Signal und ein Kreuzdipol für das Referenzsignal. Beide Antennentypen besitzen zwar horizontale Polarisation, aber aufgrund unterschiedlicher Elevations-Antennendiagramme, Höhen über Grund und/oder einem Antennen-Gegengewicht (Counter-Poise, CP) weichen oberhalb 40° Erhebungswinkel die Elevation-Antennendiagramme voneinander ab. Hierdurch variiert die Feldstärke der beiden VOR-Signal-Anteile. Wenn eines der beiden Signale zu schwach ist, kann das VOR-Signal im Empfänger nicht verarbeitet werden oder es kommt zu einer fehlerhaften Auswertung der Phasendifferenz zwischen der Referenz und der rotierenden Phase. Anstelle von COS wird dies dann auch als COA (Cone-Of-Ambiguity) bezeichnet.

Da die Anzeige des VOR-Instrumentes im Schweigekegel nicht zuverlässig ist wird dann im Anzeigefeld des Naivigationsempfängers eine rote Warnflagge eingeblendet.

VOR-Identification und optionaler Voice Channel

Bearbeiten
 
Die VOR-Anzeige ist ausschließlich von der Flugzeugposition abhängig, nicht von der Flugrichtung. Auch im Heißluftballon hat man die gleiche Anzeige.

(D)VOR und VOT besitzen einen Klarnamen und eine ID (Identification, dt. Kennung)[14], die bei der internationalen Frequenzkoordinierung koordiniert werden und die vor Freigabe einer Flugnavigationsanlage zur Nutzung im nächsten Update der AIP (Aeronautical Information Publication, dt. Luftfahrthandbuch) des jeweiligen Landes veröffentlicht werden. Eine Identification besteht in Europa aus zwei oder drei Buchstaben[12] Nr. 7. Identifications of Radio Navigation Aids. Der Klarnamen kann von einem Flugplatz oder einer Stadt abgeleitet werden, z. B. Frankfurt VOR/TAC (ID: FFM), wobei in Einzelfällen auch ein freigewählter Name, z. B. VOR Metro bei Frankfurt (ID: MTR) gewählt wird. Bei Standortwechsel kann ein etablierter Klarname und die ID an einem neuen Standort weiterbetrieben werden. Eine Identification darf nicht innerhalb von 600 NM von einem Standort für eine andere Flugnavigationsanlage, z. B. (D)VOR, ILS, DME/N oder TACAN erneut verwendet werden.[12] Nr. 7.3 Nicht verwendet werden dürfen die Buchstaben-Kombinationen ID "GAT", "OAT"[12] Nr.7.2.4, sowie die ID "TST" die für Flugnavigationsanlagen im Testbetrieb reserviert sind.[12] Nr.7.2.3 Die Identification wird im Morse-Code[15] alle 30-40 s mit 7 WPM (Words Per Minute) durch Tastung eines 1020 Hz ±50 Hz Ton ausgesendet[11] Nr. 3.3.6 Voice and identification. Eine Duplizierung der Identification mit der Identification von NDB kann in Einzelfällen vorkommen, da diese in Europa lange Zeit getrennt von den anderen Flugnavigationsanlagen koordiniert wurden. Bei Frequenzpaarung einer (D)VOR mit einem DME/N oder einer TACAN erhalten alle Anlagen den gleichen Klarnamen und Identification. Optional steht bei jeder (D)VOR und VOT ein Voice Channel (dt. Sprachkanal) mit einem Frequenzgang von 300 Hz bis 3000 Hz zur Verfügung.[11] Nr.3.3.6 Im Gegensatz zu ILS-LLZ bei denen der Voice-Channel zur Aufsprache der Kennung verwendet werden, wird der Voice-Channel bei (D)VOR für sich wiederholende Ansagen wie ATIS oder VOLMET verwendet. In Deutschland wird kein Voice Channel bei einer (D)VOR oder VOT mehr verwendet, die letzte Nutzung war bis zu deren Abbau die VOT Hamburg.

Im Sprechfunkverkehr buchstabiert man die zwei oder drei Buchstaben der Identification im ICAO-Alphabet[16]Fig. 5.1 (dt. internationales Fliegeralphabet) aus, z. B. wird die Id. "GDR" als Golf–Romeo–Delta buchstabiert. Im Flugfunk wird immer nur einfach "VOR" gesagt und nicht "VOR/DME" oder "VORTAC". Wenn es klar ist, dass es sich um ein VOR handelt, wird meist nur einfach der Name gesagt – ohne den Zusatz „VOR“. Beispiel: „cleared to Frankfurt via Nienburg and Warburg“.

Der Name von Intersections wird mit fünf Buchstaben angegeben, um sie deutlich von VORs zu unterscheiden. Beispiel: die Flugstrecke BUDDA–DERFA–VISLA–PRG–WERLA führt also über genau ein VOR: das PRG-VOR.

Kennungs- und/oder Namensdoppelungen kommen innerhalb 600 NM Abstand in Europa mit Ausnahme von wenigen NDB nicht vor. Sofern eine Dopplung auf der Flugroute auftritt erfolgt meist eine Zwischenabfrage, indem die Art und die Koordinaten der beiden gleichnamigen Funkanlagen angezeigt werden.[12] Nr.7.3

Der Name und der Standort, wo sich das VOR befindet, muss nicht zwingend gleich sein. Das VOR WIL (Willisau) in der Schweiz befindet sich einige Gemeinden weiter in Grossdietwil.

Kartendarstellung

Bearbeiten
 
Kartendarstellung der Funkfeuer

Auf Luftfahrtkarten gibt es separate Symbole für

  • VOR
  • VOR mit DME
  • VORTAC

Es wird nicht zwischen VOR und DVOR unterschieden.

In den Kompassrosen um VORs auf der Luftfahrtkarte ist die magnetische Missweisung bereits berücksichtigt.

 
VOR-Instrument als Version mit schwenkender oder parallel verschiebender Anzeigenadel (CDI)
 
VOR-Instrument Animiertes GIF – bitte in höchster Vergrößerung betrachten – funktioniert nur dann korrekt

Bodeneinrichtungen

Bearbeiten

Reichweite; Kategorien von VORs

Bearbeiten

In Europa gibt es keine standardisierten Vorgaben zu Reichweite, Flughöhe oder Kategorien wie von der FAA in den USA. Eine (D)VOR die auf dem Gelände eines Flugplatzes steht ist nicht generell auf Anflugverfahren beschränkt, sondern kann auch für Streckennutzung mit einem DOC großer Reichweite betrieben werden (z. B. DVOR/TAC Nörvenich mit 60 NM oder Helgoland mit 45° bis 202° 60 NM/FL 500, 202° bis 45° 200 NM/FL 500).

In den USA werden von der FAA VORs nach ihrer Reichweite (engl. service volume) in drei Kategorien unterteilt, je nachdem wie weit der garantierte, deutliche Signalempfang ohne Interferenzen reicht.

  • High Altitude VOR (HVOR) – Reichweite maximal 130 NM bei 45.000 ft, 100NM 60.000ft ATH
  • Low Altitude VOR (LVOR) – Reichweite 40 NM bei 18.000 ft
  • Terminal VOR (TVOR) – Reichweite 25 NM bei 12.000 ft, wird generell als Anflughilfe benutzt.[17]Gen 3.1.4

Hier folgt noch die Aufschlüsselung der Reichweiten nach der Flughöhe.

  • HVOR:
    • 1.000 bis 14.500 ft – 40 NM
    • 14.500 bis 18.000 ft – 100 NM
    • 18.000 bis 45.000 ft – 130 NM
    • 45.000 bis 60.000 ft – 100 NM
  • LVOR: 1.000 bis 18.000 ft – 40 NM
  • TVOR: 1.000 bis 12.000 ft – 25 NM

Von einer TVOR-Station kann häufig die ATIS empfangen werden.

Container-(D)VOR

Bearbeiten

Wenn eine (D)VOR, (D)VOR/DME oder (D)VOR/TAC längere Zeit ausfällt (z. B. Umbau, Erneuerung), wird von der DFS, sofern betrieblich gefordert, eine Container-VOR, -VOR/DME oder -VOR/TAC aufgestellt, die den Betrieb während der Ausfallzeit übernimmt. Container-VOR, -VOR/DME und VOR/TAC erhalten eine eigene Frequenz, bzw. Frequenzpaar und nutzen nicht die Frequenzen der zu ersetzenden (D)VOR, (D)VOR/DME oder (D)VOR/TAC, da sonst die notwendige technische Abnahme der zu erneuernden Anlage nicht ohne Abschaltung der Container-VOR möglich wäre. Eine Container-VOR, -VOR/DME oder VOR/TAC wird wie jede andere Flugnavigationsanlage erst nach erfolgreicher internationaler Frequenzkoordinierung, sowie nach technischer und betrieblicher Freigabe in der deutschen AIP veröffentlicht. Bei Bedarf kann zusätzlich ein oder mehrere NOTAM veröffentlicht werden.

VHF Omni Test (VOT, dt. Test-VOR)

Bearbeiten
 
Wenn die CDI seitlich auf Anschlag ist, kann man seinen Quadranten ermitteln – rechts oder links von Radial; vor oder hinter dem VOR.

Eine Very High Frequency (VHF) Omni Test (VOT) erlaubt Piloten die Funktionsfähigkeit der VOR-Empfänger zu testen. Das VOR-Instrument zeigt bei Einwahl einer VOT konstant ein Radial 360 an. Als Nutzungsbereich an Flughäfen werden z. B. Ramps, Taxiways, Intersections und andere Standorte im RLOS der VOT von der FAA spezifiziert[18] B.11, können jedoch auch an anderen Standorten stehen solange die VOR Mindestfeldstärke erreicht wird. VOT unterliegen den gleichen Anforderungen die für (D)VOR von ICAO gestellt werden und werden nicht explizit in ICAO Annex 10 Vol.I aufgeführt, jedoch im ICAO DOC-8071 Vol.I Manual on Testing Radio Navigation Aids[19] S.20 bis zur Edition 4. Die U.S. FAA hat Standortauswahlkriterien (englisch: Siting Criteria) für VOT definiert.[20]

In Deutschland ist keine VOT mehr in Betrieb, die letzte Nutzung war bis zu deren Abbau die VOT Hamburg, und diese wurde nur zur Abstrahlung einer sich wiederholenden Broadcast Sprachnachricht betrieben.

Kombinierte Bodeneinrichtungen

Bearbeiten

(D)VOR/DME

Bearbeiten

(D)VOR/DME sind eine Kombination aus einem DME/N-Transponder zur Slant-Range Entfernungsmessung und einer (D)VOR für den Azimuth bezogen auf magnetisch Nord. Etwa drei Viertel aller Drehfunkfeuer in Deutschland verfügen über einen DME/N- oder einen TACAN-Transponder. VOR zeigt die Richtung von der Bodenstation zum Flugzeug an; DME zeigt die Entfernung zum DME-Transponder in Nautischen Meilen (NM) an. Die Kombination von VOR und DME ermöglicht die Positionsbestimmung mit Hilfe einer einzigen Bodenstation.

(D)VORTAC

Bearbeiten

Bei (D)VOR/TAC Anlagen wird der DME/N-Transponder einer (D)VOR/DME durch einen TACAN-Transponder (Tactical Air Navigation) ersetzt. Hierdurch kann eine VOR/TAC Anlage sowohl von zivilen als auch militärischen Luftfahrzeugen genutzt werden. TACAN ist eine militärische Flungnavigationsfunkanlage die nicht nur eine zu DME/N Spezifikationen kompatible Slant-Range Entfernung liefert, sondern zusätzlich auch eine Azimuth Information, ähnlich zu (D)VOR, im UHF-Bereich (962 bis 1213 MHz) für militärische Luftfahrzeuge abstrahlt. TACAN und DVOR bieten eine höhere Azimuthgenauigkeit als VOR.

Bordanlage

Bearbeiten

Die Bordanlage besteht neben Antenne, Stromversorgung und Verkabelung aus folgenden Bausteinen. Je nach Einbausituation können mehrere Bausteine in einem Gehäuse kombiniert werden.

Ausrüstungsvorschrift

Bearbeiten

In Deutschland werde für Flüge nach IFR Vorgaben gemäß der Flugsicherungsausrüstung-Verordnung (FSAV) [21] §3, Abs.1, Nr.1 zwei Empfangsgeräte für die Signale von (D)VOR-Flugnavigationsanlagen die die nach gültigem internationalen Standard geforderte Störfestigkeit gegenüber den Aussendungen von den im benachbarten Frequenzbereich 87,5 - 108 MHz gelegenen UKW-Rundfunksendern (FM-Immunity) aufweisen benötigt. Davon kann ein Empfangsgeräte für (D)VOR-Flugnavigationsanlagen entfallen, wenn eine von der VOR-Navigations-Empfangsanlage unabhängige funktionsfähige Flächennavigationsausrüstung nach FSAV [21] §3, Abs.1, Nr.6 vorhanden ist.

Bedieneinheit

Bearbeiten

Hier wird die Frequenz der gewünschten VOR-Bodenstation eingestellt. Manche VOR-Geräte bieten die Möglichkeit, zwei Frequenzen einzustellen: die aktuell aktive Frequenz und eine vorgewählte Frequenz (Stand-By-Frequenz). Per Knopfdruck tauscht man die beiden Frequenzen.

Ist das Flugzeug mit ILS ausgestattet, wird hiermit zugleich die Frequenz des Gleitwegsenders (Frequenzband 329,15…335,00 MHz) eingestellt.

Ist das Flugzeug mit DME ausgestattet, werden i. d. R. hiermit zugleich die Sende- und Empfangsfrequenzen des DME (Frequenzband 960…1215 MHz) eingestellt.

Anzeigeinstrument

Bearbeiten

Verschiedene Arten von Anzeigegeräten können verwendet werden:

  •  
    Radio Magnetic Indicator (RMI)
    Radio Magnetic Indicator (RMI). Ein Zeiger dreht sich auf einer Kompasskarte und zeigt zur VOR-Bodenstation hin; die Kompasskarte wiederum wird vom Kurskreisel gedreht und zeigt den missweisenden Steuerkurs an. Der Pilot kann am RMI sowohl die missweisende Peilung zur VOR-Bodenstation (QDM) als auch die relative Peilung der VOR-Bodenstation (links/rechts) ablesen.
  •  
    VOR-Instrument (CDI-Anzeigegerät) im Flugzeug – in FROM-Position
    Course Deviation Indicator (CDI – Kursablageanzeige). Je nach Bauart dreht sich die Anzeigennadel um den obersten Punkt, beziehungsweise wandert sie durch Parallelverschiebung nach rechts oder links. Die Anzeigennadel zeigt auf eine Skala mit einem mittleren Punkt und je 5 Punkten rechts und links. Jeder Punkt entspricht einer Abweichung von 2° vom Sollkurs.
    Der Sollkurs wird mit dem OBS-Drehknopf (Omni Bearing Selector – Kurswahlknopf) eingestellt.
    Ist der Winkel zwischen OBS-Einstellung und aktuellem Radial < 90°, zeigt eine Flagge FR(OM), Dreieck nach unten. Ist der Winkel > 90°, zeigt die Flagge TO, Dreieck nach oben. Bei einem Winkel ~ 90° sowie beim Überfliegen des VOR-Senders bleibt die Flagge verborgen. Bei gestörtem Empfang erscheint eine Warnflagge.
  • Kreuzzeigerinstrument. Ist das Flugzeug mit ILS ausgestattet, kommt statt des CDI ein Kreuzzeigerinstrument zum Einsatz. Die vertikale Nadel (Ausschlag links/rechts) hat die Funktion wie beim CDI. Die horizontale Nadel (Ausschlag oben/unten) zeigt die Abweichung vom Gleitpfad an.
  • Horizontal Situation Indicator (HSI). Der HSI kombiniert die Funktion des CDI mit der Kurskreiselanzeige.
  • Electronic Flight Instrument System (EFIS). Informationen vom VOR-Empfänger können im Navigation Display des EFIS dargestellt werden. Oft werden herkömmliche elektromechanische Instrumente wie RMI und CDI im EFIS nachgeahmt.

Elektronikmodul

Bearbeiten

In großen Flugzeugen ist das Elektronikmodul im Avionik-Abteil untergebracht. In anderen Flugzeugen ist es mit der Bedieneinheit und/oder dem Anzeigeinstrument integriert.

Vergleich mit anderen Navigationssystemen

Bearbeiten

Drehfunkfeuer sind Short Range Flugnavigationsanlagen in dicht besiedelten Ländern mit flachen Landschaften mit maximalen Reichweiten von 200 NM, während für Nutzung von Sektoren die Meer und Ozeane abdecken auch 300 NM bei FL 700 möglich sind (z. B. Shannon ID "SHA").[22] ENR 4.1 In engen Tälern sind VORs wegen der starken Reflexion der UKW-Signale an den Bergen ungeeignet, dort ist man auf NDBs angewiesen wie beispielsweise beim Flughafen Innsbruck.

Aus Kostengründen bleibt die bequeme, aber teure VOR-Navigation hoch entwickelten Ländern vorbehalten, in dünn besiedelten (Entwicklungs-)Ländern sind NDBs unverzichtbar für die Flugnavigation. Inseln wie Tuvalu findet man nicht ohne NDB, dort wird es wohl auch zukünftig kein VOR geben.[23]

Globale Navigationssatellitensysteme (GNSS) verdrängen allmählich VOR/DME. In Deutschland sind VOR/DME nach wie vor die für Instrumentennavigation gesetzlich vorgeschriebenen Primärinstrumente.

Luftstraßen

Bearbeiten

Luftstraßen wurden ursprünglich hauptsächlich über Funknavigationsanlagen, darunter auch VOR-Funkfeuer, geführt und ihr Verlauf wurde von diesen definiert. Die Verzweigung von Luftstraßen erfolgte oft an VORs. Seit Einführung der Flächennavigation (RNAV) werden Luftstraßen und Meldepunkte (Kreuzungen) zunehmend unabhängig von bodenseitigen Funknavigationsanlagen wie VORs definiert, was die Kapazität des Luftraums deutlich erhöht.

Die Verbindungslinie zwischen zwei Funkfeuern (VOR, NDB usw.) ergibt durch deren unveränderliche Position zwingend einen Kurs, der auch OBS-Kurs genannt wird. In der Flugkarte findet man diesen Kurs neben der Luftstraße eingezeichnet, er ist nicht zu verwechseln mit dem Radial des VORs (zum Beispiel R-345), welches den Gegenkurs (± 180°) zum eigentlichen Kurs anzeigt.

Bewegt man sich auf einer Luftstraße auf ein Funkfeuer zu, nennt man dies „inbound“, bewegt man sich davon weg, so bezeichnet man das als „outbound“.

Liste der VORs in Deutschland

Bearbeiten
 
Standorte von VORs in Deutschland
Kennung Typ Name Frequenz [MHz] Kanal Koordinaten Lage Bemerkung
BAM VOR/DME Barmen 114,00 CH 87x !551.3277585507.176983551° 19′ 39,93″ N, 007° 10′ 37,14″ O nördlich von Wuppertal(-Barmen) auf dem Stadtgebiet Hattingens [24]AD2 EDLW 1-7
BBI DVOR/DME Berlin-Brandenburg 114,10 CH 88x !552.3420145513.454047552° 20′ 31,25″ N, 013° 27′ 14,57″ O 0,57 NM SW der RWY 07R des Flughafens Berlin-Brandenburg [24]AD2 EDDB 1-12
BKD DVOR/DME Bruenkendorf 117,70 CH124x !553.0345255511.546217553° 02′ 04,29″ N, 011° 32′ 46,38″ O westlich von Schnackenburg (Elbe) [25]ENR 4.1.2
BMN DVOR/DME Bremen 117,45 CH121y !553.0462535508.760447553° 02′ 46,51″ N, 008° 45′ 37,61″ O am Flughafen Bremen [24]AD2 EDDW 1-7
COL DVOR/DME Cola 108,80 CH 25x !550.7833335507.594175550° 47′ 00,00″ N, 007° 35′ 39,03″ O 17 NM Nähe Windeck Locksiefen, südöstlich von Köln-Bonn [25]ENR 4.1.2, Abbau im Jahr 2024 geplant[26]
DHE VOR/DME Helgoland 116,30 CH110x !554.1856865507.910700554° 11′ 08,47″ N, 007° 54′ 38,52″ O am Flugplatz Helgoland-Düne [27]ENR 4.1.6
DKB DVORTAC Dinkelsbuehl 117,80 CH125x !549.1427535510.238306549° 08′ 33,91″ N, 010° 14′ 17,90″ O bei Hohenkreßberg [25]ENR 4.1.2
DLE DVOR/DME Leine 115,20 CH99x !552.2503195509.883494552° 15′ 01,15″ N, 009° 53′ 00,58″ O [24]AD2 EDDV 1-12
DOR DVOR/DME Wickede 108,65 CH 23y !551.5253425507.631056551° 31′ 31,23″ N, 007° 37′ 51,80″ O am Flughafen Dortmund [24]AD2 EDLW 1-8
DRN DVOR/DME Dresden 114,35 CH 90y !551.0155475513.598889551° 00′ 55,97″ N, 013° 35′ 56,00″ O bei Oberhermsdorf [25]ENR 4.1.2
DUS VOR/DME Düsseldorf 115,15 CH 98y !551.2831895506.753725551° 16′ 59,48″ N, 006° 45′ 13,41″ O Flughafen Düsseldorf [24]AD2 EDDL 1-10
ERF DVOR/DME Erfurt 113,85 CH 85y !550.9508695511.236683550° 57′ 03,13″ N, 011° 14′ 12,06″ O 200 m westlich der AS Nohra nördlich der BAB 4 [25]ENR 4.1.3
FFM DVORTAC Frankfurt 114,20 CH 89x !550.0537425508.637092550° 03′ 13,47″ N, 008° 38′ 13,53″ O östlich des Flughafens Frankfurt in unmittelbarer Nähe der A3 [28]ENR 4.1.4
FKS DVOR/DME Frankenstein 117,50 CH122x !549.7909725508.542361549° 47′ 27,50″ N, 008° 32′ 32,50″ O bei Pfungstadt Hahn [28]ENR 4.1.3, Ersatz durch DVOR/DME Ried RID geplant[29]
FLD DVOR/DME Friedland 117,15 CH118y !553.7627365513.563136553° 45′ 45,85″ N, 013° 33′ 47,29″ O bei Drewelow [28]ENR 4.1.4
FUL DVOR/DME Fulda 112,10 CH 58x !550.5924565509.572169550° 35′ 32,84″ N, 009° 34′ 19,81″ O nördlich von Bimbach (Großenlüder), ca. 5 NM westlich von Fulda [28]ENR 4.1.4
FWE VOR/DME Fürstenwalde 113,30 CH 80x !552.4113315514.130589552° 24′ 40,79″ N, 014° 07′ 50,12″ O östlich von Berlin [24]AD2 EDDB 1-13, Abbau im Jahr 2025 geplant[26]
GED DVORTAC Gedern 110,80 CH 45x !550.4119445509.249167550° 24′ 43,00″ N, 009° 14′ 57,00″ O nordöstlich von Frankfurt/Main Abbau im Jahr 2024 geplant[26]
GMH DVOR/DME Germinghausen 115,40 CH101x !551.1705115507.892039551° 10′ 13,84″ N, 007° 53′ 31,34″ O 22 NM südöstlich von Dortmund [28]ENR 4.1.4
GOT DVOR/DME Gotem 115,25 CH 99y !551.3431175511.597528551° 20′ 35,22″ N, 011° 35′ 51,10″ O 16 NM südwestlich von Halle [27]ENR 4.1.5
HAM DVOR/DME Hamburg 113,10 CH 78x !553.6855755510.204997553° 41′ 08,07″ N, 010° 12′ 17,99″ O NM nordöstlich vom Flughafen Hamburg [27]ENR 4.1.5
HDO DVOR/DME Hermsdorf 115,00 CH 97x !550.9281505514.368800550° 55′ 41,34″ N, 014° 22′ 07,68″ O bei Hinterhermsdorf [27]ENR 4.1.6
HLZ DVOR/DME Hehlingen 117,30 CH120x !552.3633945510.795219552° 21′ 48,22″ N, 010° 47′ 42,79″ O bei Wolfsburg [27]ENR 4.1.6
HMM DVOR/DME Hamm 115,65 CH103y !551.8568675507.708294551° 51′ 24,72″ N, 007° 42′ 29,86″ O zwischen Hamm und Münster [27]ENR 4.1.5
KBO TVOR/DME Köln-Bonn 112,15 CH 58y !550.8616675507.145556550° 51′ 42,00″ N, 007° 08′ 44,00″ O am Flughafen Köln-Bonn
KLF DVOR/DME Klasdorf 115,15 CH 98y !552.0193535513.563414552° 01′ 09,67″ N, 013° 33′ 48,29″ O Ortsteil von Baruth/Mark südlich von Berlin [24]ENR 4.1.7
KPT DVOR/DME Kempten (Allgäu) 109,60 CH 33x !547.7457755510.349833547° 44′ 44,79″ N, 010° 20′ 59,40″ O 1,5 km nordöstlich des Autobahnkreuzes Allgäu [24]ENR 4.1.7
KRH DVOR/DME Karlsruhe 115,95 CH106y !548.9929445508.584236548° 59′ 34,60″ N, 008° 35′ 03,25″ O 1,5 km südöstlich von Wöschbach [24]ENR 4.1.7
LBU VOR/DME Luburg 109,20 CH 29x !548.9129755509.340228548° 54′ 46,71″ N, 009° 20′ 24,82″ O nahe Affalterbach, Landkreis Ludwigsburg [24]ENR 4.1.8, Abbau im Jahr 2023/2024 geplant[26]
LEG VOR/DME Leipzig/Halle 115,85 CH105y !551.4360475512.473592551° 26′ 09,77″ N, 012° 28′ 24,93″ O bei Mutschlena [24]AD2 EDDP 1-12
LWB DVOR/DME Löwenberg 114,55 CH 92y !552.9100425513.134614552° 54′ 36,15″ N, 013° 08′ 04,61″ O nördlich von Berlin, Gemeinde Löwenberger Land [24]AD2 EDDB 1-13
MAG VOR/DME Magdeburg 110,45 CH 41y !551.9949895511.794306551° 59′ 41,96″ N, 011° 47′ 39,50″ O Sonderlandeplatz Schönebeck-Zackmünde [24]ENR 4.1.8
MAH DVOR/DME Maisach 115,20 CH 21x !548.2634315511.311925548° 15′ 48,35″ N, 011° 18′ 42,93″ O 20 NM westlich vom Flughafen München [24]ENR 4.1.8
MHV DVOR Mönchengladbach 109,80 !551.2373005506.490244551° 14′ 14,28″ N, 006° 29′ 24,88″ O Verkehrslandeplatz Mönchengladbach, nordwestlich von RWY 13 [24]AD2 EDDL 1-12
MIC DVOR Michaelsdorf 112,20 !554.3050005511.005000554° 18′ 18,00″ N, 011° 00′ 18,00″ O bei Oldenburg in Holstein
MTR VOR Metro 110,00 !550.2762755508.848625550° 16′ 34,59″ N, 008° 50′ 55,05″ O [24]ENR 4.1.8
NIE VOR Nienburg 116,50 !552.6258425509.372150552° 37′ 33,03″ N, 009° 22′ 19,74″ O in der Nähe von Linsburg [24]ENR 4.1.9
NTM VORTAC Nattenheim 115,30 CH100x !550.0158335506.531944550° 00′ 57,00″ N, 006° 31′ 55,00″ O 15 NM nördlich von Trier
NUB VOR/DME Nürnberg 115,75 CH104y !549.5029195511.035000549° 30′ 10,51″ N, 011° 02′ 06,00″ O bei Nürnberg - Buch [24]AD2 EDDN 1-7
NVO DVORTAC Nörvenich 116,20 CH109x !550.8226755506.636533550° 49′ 21,63″ N, 006° 38′ 11,52″ O am Fliegerhorst Nörvenich [24]ENR 4.1.9
OSN DVOR Osnabrück 114,30 !552.2001365508.285519552° 12′ 00,49″ N, 008° 17′ 07,87″ O An der A 30 Nähe Flugplatz Melle-Grönegau [24]ENR 4.1.9
OTT VOR/DME Ottersberg 112,30 CH 70x !548.1803945511.816536548° 10′ 49,42″ N, 011° 48′ 59,53″ O bei Poing – östlich von München [24]ENR 4.1.9, früher: MUN
RDG DVOR/DME Roding 114,70 CH 94x !549.0401395512.526625549° 02′ 24,50″ N, 012° 31′ 35,85″ O 16 NM östlich von Regensburg bei Bogenroith [24]ENR 4.1.10, Abbau im Jahr 2025 geplant[26]
SAS VOR/DME Sarstedt 114,45 !552.2507785509.884219552° 15′ 02,80″ N, 009° 53′ 03,19″ O nordöstlich von Sarstedt [24]ENR 4.1.10, soll das Funkfeuer Leine (DLE) ersetzt[30]
STG DVOR/DME Stuttgart 116,85 CH115y !548.6964285509.256547548° 41′ 47,14″ N, 009° 15′ 23,57″ O direkt östlich des Flughafens Stuttgart an der A8 [24]AD2 EDDS 1-9
SUL DVOR Sulz 116,10 !548.3815865508.644836548° 22′ 53,71″ N, 008° 38′ 41,41″ O 18 NM südwestlich von Tübingen [24]ENR 4.1.10
TAU VOR/DME Taunus 113,35 CH80y !550.2505565508.162500550° 15′ 02,00″ N, 008° 09′ 45,00″ O etwa mittig zwischen Wiesbaden und Limburg [24]AD2 EDDF 1-19
TGL DVOR/DME Berlin-Tegel 112,30 CH 70x !552.5613895513.287500552° 33′ 41,00″ N, 013° 17′ 15,00″ O Flughafen Berlin-Tegel (außer Betrieb)
TOF DVORTAC Berlin-Tempelhof 114,10 Flughafen Tempelhof (außer Betrieb)
TRT VOR/DME Trent 108,45 CH 21y !554.5109695513.249328554° 30′ 39,49″ N, 013° 14′ 57,58″ O auf Rügen [24]ENR 4.1.10
VFM DVOR Nauheim 113,75 !549.9618285508.471219549° 57′ 42,58″ N, 008° 28′ 16,39″ O südwestlich des Flughafens Frankfurt an der A 67, Höhe Nauheim [24]AD2 EDDF 1-19
WLD DVOR/DME Walda 112,80 CH 75x !548.5794195511.129386548° 34′ 45,91″ N, 011° 07′ 45,79″ O 15 NM nordöstlich von Augsburg [24]ENR 4.1.11
WRB DVOR/DME Warburg 113,70 CH 84x !551.5056975509.110914551° 30′ 20,51″ N, 009° 06′ 39,29″ O 18 NM südöstlich von Paderborn [24]ENR 4.1.11
WYP VOR Wipper 109,60 !551.0483535507.279997551° 02′ 54,07″ N, 007° 16′ 47,99″ O 10 NM nördlich von Köln-Bonn (Gemeinde Kürten) [24]ENR 4.1.11
ZWN DVOR/DME Zweibrücken 114,80 CH 95x !549.2290725507.417892549° 13′ 44,66″ N, 007° 25′ 04,41″ O am Flugplatz Zweibrücken [24]ENR 4.1.11

Liste ehemaliger VORs in Deutschland

Bearbeiten
Kennung Typ Name Frequenz [MHz] Kanal Koordinaten Infos Ab- und Umbau Bemerkung
BAY VOR Bayreuth 110,60 !549.9852785511.636667549° 59′ 07,00″ N, 011° 38′ 12,00″ O war auf dem Verkehrslandeplatz Bayreuth
CHA VOR/DME Charlie 115,35 !549.9211115509.039722549° 55′ 16,00″ N, 009° 02′ 23,00″ O südöstlich von Frankfurt in der Nähe des Flugplatzes Aschaffenburg VOR-Teil abgeschaltet, derzeit nur DME-Betrieb[31]
ERL VOR/DME Erlangen 114,90 CH 96x !549.6552785511.150833549° 39′ 19,00″ N, 011° 09′ 03,00″ O 1,6 km nördlich des Flugplatzes Hetzleser Berg VOR-Teil abgeschaltet, derzeit nur DME-Betrieb
EUR VOR/DME Eurach 115,20 47° 44' 06,03" N, 011° 14' 57,95" O Stilllegung am 05. Juni 2008,

Nachnutzung ab 2023 als "Eurach NSE" der DFS.

MDF (X) DVOR/DME Milldorf (X) 117,00 CH117x !548.2347225512.337500548° 14′ 05,00″ N, 012° 20′ 15,00″ O bei Heldenstein, westlich von Mühldorf am Inn 08/2011 zurückgezogen/inaktiv
MTR VOR Metro 110,0 !550.2763895508.848611550° 16′ 35,00″ N, 008° 50′ 55,00″ O nordöstlich von Frankfurt ersetzt durch Wegpunkt MEFTO
RID DVOR/DME Ried 112,20 CH 59x !549.7816675508.541389549° 46′ 54,00″ N, 008° 32′ 29,00″ O bei Pfungstadt-Hahn, südwestlich von Frankfurt ersetzt durch FKS
WUR VOR Würzburg 110,20 !549.7175005509.946944549° 43′ 03,00″ N, 009° 56′ 49,00″ O Abbau 2021[32][26]

Liste der VORs in Österreich

Bearbeiten
 
Drehfunkfeuer (Österreich)
FMD
GRZ
KFT
LNZ
SBG
SNU
STO
TUN
WGM
Standorte aller 11 VORs in Österreich
Kennung Typ Name Frequenz/Kanal Koordinaten Lage
FMD TVOR/DME Fischamend 110,4 !548.1050005516.630000548° 06′ 18,00″ N, 016° 37′ 48,00″ O 4 km östlich vom Flughafen Wien-Schwechat
GRZ DVOR/DME Graz 116,2 !546.9550005515.450000546° 57′ 18,00″ N, 015° 27′ 00,00″ O 5 km südlich von Graz
KFT DVOR/DME Klagenfurt 113,1 !546.5983335514.561667546° 35′ 54,00″ N, 014° 33′ 42,00″ O 10 km östlich von Klagenfurt
LNZ DVOR/DME Linz 116,6 !548.2300005514.103333548° 13′ 48,00″ N, 014° 06′ 12,00″ O 3 km westlich vom Flughafen Linz
SBG DVOR/DME Salzburg 113,8 !548.0000005512.883333548° 00′ 00,00″ N, 012° 53′ 00,00″ O 15 km nordwestlich von Salzburg
SNU DVOR/DME Sollenau 115,5 !547.8750005516.288333547° 52′ 30,00″ N, 016° 17′ 18,00″ O 5 km nordöstlich von Wiener Neustadt
STO DVOR/DME Stockerau 113,0 !548.4166675516.018333548° 25′ 00,00″ N, 016° 01′ 06,00″ O 50 km nordwestlich von Wien
TUN DVOR/DME Tulln 111,4 !548.3093335515.979700548° 18′ 33,60″ N, 015° 58′ 46,92″ O 20 km westlich von Wien
WGM DVOR/DME Wagram 112,2 !548.3237785516.490917548° 19′ 25,60″ N, 016° 29′ 27,30″ O 20 km nordöstlich von Wien

Liste der VORs in der Schweiz

Bearbeiten
 
Standorte aller 12 VORs in der Schweiz und 1 in Frankreich
Kennung Typ Name Frequenz/Kanal Koordinaten Lage Bemerkungen
BLM DVOR/DME Basel/Mulhouse 117,45 !547.6327785507.499444547° 37′ 58,00″ N, 007° 29′ 58,00″ O Nähe Bartenheim; auf französischem Territorium, da der Flughafen Basel Mulhouse Freiburg von zwei Staaten gemeinsam betrieben wird
FRI VOR/DME Fribourg 110,85 !546.7783335507.223333546° 46′ 42,00″ N, 007° 13′ 24,00″ O Zwischen Sankt Ursen und Rechthalten, Kanton Freiburg
GRE DVOR/DME Grenchen 115,45 !547.1830565507.418056547° 10′ 59,00″ N, 007° 25′ 05,00″ O auf dem Flughafen Grenchen
GVA DVOR/DME Geneva 115,75 !546.2538895506.132222546° 15′ 14,00″ N, 006° 07′ 56,00″ O auf dem Flughafen Genf
HOC DVOR/DME Hochwald 113,2 !547.4666675507.665000547° 28′ 00,00″ N, 007° 39′ 54,00″ O bei Gempen, Kanton Solothurn aufgehoben seit 2016
KLO DVOR/DME Kloten 114,85 !547.4616675508.550000547° 27′ 42,00″ N, 008° 33′ 00,00″ O auf dem Flughafen Zürich
MOT DVOR/DME Montana 115,85 !546.3133335507.503333546° 18′ 48,00″ N, 007° 30′ 12,00″ O 16 km nordöstlich von Flughafen Sion aufgehoben seit 2012
PAS DVOR/DME Passeiry 116,6 !546.1633335506.001667546° 09′ 48,00″ N, 006° 00′ 06,00″ O Gemeinde Chancy, im äußersten Westen der Schweiz
SIO DVOR/DME Sion 112,15 !546.2150005507.288333546° 12′ 54,00″ N, 007° 17′ 18,00″ O 3 km westlich von Flughafen Sion
SPR VOR/DME St-Prex 113,9 !546.4686115506.448056546° 28′ 07,00″ N, 006° 26′ 53,00″ O im Genfersee ca. 1 km südlich Saint-Prex
TRA DVOR/DME Trasadingen 114,3 !547.6894445508.436944547° 41′ 22,00″ N, 008° 26′ 13,00″ O 27 km NNW vom Flughafen Zürich
WIL VOR/DME Willisau 116,9 !547.1783335507.905944547° 10′ 42,00″ N, 007° 54′ 21,40″ O bei Grossdietwil, Kanton Luzern
ZUE DVOR/DME Zurich East 110,05 !547.5922225508.817500547° 35′ 32,00″ N, 008° 49′ 03,00″ O 25 km nordöstlich vom Flughafen Zürich

Standards

Bearbeiten

VOR-Empfänger:

  • ARINC (Aeronautical Radio, Inc): Characteristic 579-1, 5.Feb.1971, Airborne VOR Receiver
  • EUROCAE (European Organisation for Civil Aviation Equipment): ED-22A, Sep.1981, ED-22B, Jan.1988, Minimum Performance Specification for Airborne VOR Receiving Equipment,
  • RTCA (Radio technical Commission for Aeronautics): DO-196, Minimum Operational Performance Standards for Airborne VOR Receiving Equipment Operating within the Radio Frequency Range of 108 -117.95 MHz, 17. Nov.1986

(D)VOR Sender:

  • EUROCAE: ED-52, Ed.2, Minimum Performance Specification for Ground Conventional and Doppler Very High Frequency Omni Range (CVOR and DVOR) Equipment, Aug.1984,
  • BNetzA (Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen): SSB FL 019 Schnittstellenbeschreibung für Drehfunkfeueranlagen (VOR, D-VOR), Jan.2017, [33]

Siehe auch

Bearbeiten
  • DME (Distance Measuring Equipment)
  • TACAN (Tactical Air Navigation) Rho-Theta-Standard-Flugnavigationssystem für die militärische Luftfahrt von NATO Mitgliedsländern
  • RSBN (russisches Drehfunkfeuersystem mit ähnlichem Prinzip)
Bearbeiten
Commons: Drehfunkfeuer – Sammlung von Bildern und Audiodateien

Einzelnachweise

Bearbeiten
  1. Section 1. Navigation Aids. In: Aeronautical Information Manual – faa.gov. United States Department of Transportation – Federal Aviation Administration, 22. Mai 2022, abgerufen am 28. August 2022 (englisch).
  2. Beispiel: Prüfungsfragen zum BZF I und II, ab Seite 46 (Memento vom 2. Juli 2020 im Internet Archive), PDF der Bundesnetzagentur, abgerufen am 21. Mai 2023
  3. Rho-Theta System of Air Navigation, P. C. SANDRETTO, Electrical Communication, Vol.27, Nr. 4, December 1950.
  4. Technical Development Report No. 113, TDR-113, The CAA VHF Omnirange, H. C. Hurley, S. R. Anderson and H. F. Keary, June.1950, Technical Development and Evaluation Center Indianapolis. (nonstopsystems.com [PDF]).
  5. Report 540-2, Vol.I, Final Report on Evaluation of Omni-Bearing-Distance System of Air Navigation, by W. R. Rambo, J. S. Prichard, D. P. Duffy, R. C. Wheeler, A. E. Dusseau, Jr., and S. Goldstein, October.1950, Airborne Instruments Laboratory Instruments Inc.
  6. TDR-114 (Technical Development Report No. 114), UHF Distance Measuring Equipment for Air Navigation, By. R. C. Borden, C. C. Trout and E. C. Williams Electronics Division, June 1950.
  7. a b ICAO, International Standards and Recommended Practices, Aeronautical Telecommunications, Annex 10, ed. 1, Mai.1950.
  8. ITU Radio Regulations Articles, ed. 2024.
  9. TDR-392 (Technical Development Report No. 392), The CAA Doppler Omnirange, Sterling R . Anderson, Robert B . Flint, April 1959, Federal Aviation Agency, Technical Development Center.
  10. Die Weiterentwicklung des Drehfunkfeuer (VOR) zum Doppler Drehfunkfeuer (DVOR), Dipl. Ing.W.Feyer, Sonderdruck Luftfahrttechnik – Raumfahrttechnik, Band, 14 (1968) Nr. 7/8, 186 /193.
  11. a b c d e f g h i j k ICAO, International Standards and Recommended Practices, Vol. I Radio Navigation Aids, Annex 10, ed.8, July.2023. (icao.int).
  12. a b c d e f g h i ICAO, EUR-Doc-011, EUR FREQUENCY MANAGEMENT MANUAL for Aeronautical Mobile and Aeronautical Radio Navigation Services, Edition December 2023,. (icao.int [PDF]).
  13. a b ICAO Doc-8071, Manual on Testing of Radio Navigation Aids, Ed.1, Am.1,. 1. Januar 1961.
  14. Wörterbuch der ICAO-Terminologie, Englisch - Deutsch, Deutsch - Englisch, Sonderdruck der Bundesanstalt für Flugsicherung, D-6000 Frankfurt (Main) 1, Opernplatz 14, 1981.September.
  15. ITU Recommendation ITU-R M.1677-1, International Morse code, Oktober.2009. (itu.int [PDF]).
  16. ICAO, Aeronautical Telecommunications, Annex 10 Vol.II, Communication Procedures including those with PANS status, Ed.6, Am.82, 22.November.2007, abgerufen am 20.November.2011. (icao.int [PDF]).
  17. AIP United States, 5.September.2024. (faa.gov).
  18. FAA Catalog No.24005, Flight Inspection Fundamental, Oktober.1970.
  19. ICAO, Doc-8071, Vol.I, Ed,2, Manual on Testing of Radio Navigation Aids, 1969.
  20. U.S:, FAA Order 6810.2, Very High Frequency (VHF) Omnirange Test (VOT) Siting Criteria, 1989.04.17.
  21. a b Verordnung über die Flugsicherungsausrüstung der Luftfahrzeuge (FSAV), 26.11.2004, zuletzt geändert durch Art. 13 G v. 17.12.2018 I 2549. (gesetze-im-internet.de).
  22. IFR AIP, Ireland, AIRAC Amdt 007/22. 14. Juli 2022 (airnav.ie [PDF]).
  23. Navaids in Tuvalu (Memento vom 16. Februar 2017 im Internet Archive)
  24. a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag AIP IFR Germany, 31.Oct.2024,. (dfs.de).
  25. a b c d e AIP IFR Germany, 31.Oct.2024,. (dfs.de).
  26. a b c d e f Flugsicherung und Windenergie – Die Navigationsanlagen der DFS. In: dfs.de. DFS Deutsche Flugsicherung GmbH, 25. März 2022, abgerufen am 17. Juli 2022.
  27. a b c d e f AIP IFR Germany, 31.Oct.2024,. (dfs.de).
  28. a b c d e AIP IFR Germany, 31.Oct.2024,. (dfs.de).
  29. Planning of navigation infrastructure for the 2nd half-year 2021 and outlook 2022 - DFS. In: DFS Deutsche Flugsicherung Langen. DFS, 28. Mai 2021, abgerufen am 7. September 2023 (englisch).
  30. Mit wem Sie auch fliegen: Mit uns fliegen Sie sicher. In: DFS Deutsche Flugsicherung. Abgerufen am 23. September 2023.
  31. NOTAM A5744/23
  32. Flugsicherung will bis 2025 zehn Drehfunkfeuer abbauen. In: erneuerbareenergien.de. TFV Technischer Fachverlag GmbH, abgerufen am 17. Juli 2022.
  33. BNetzA (Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen): SSB FL 019 Schnittstellenbeschreibung für Drehfunkfeueranlagen (VOR, D-VOR), Jan.2017, abgerufen 2024.November.25. (bundesnetzagentur.de [PDF]).