Rhomboederstumpf

geometrische Figur

Der Rhomboederstumpf (auch abgestumpftes Rhomboeder oder Dürer-Polyeder genannt) ist ein spezielles achtflächiges Polyeder, das auf Albrecht Dürers Kupferstich Melencolia I von 1514 dargestellt ist.

Melencolia I von Albrecht Dürer, 1514. Das Polyeder dominiert die linke Bildseite.

Beschreibung

Bearbeiten
 
Ausschnitt mit eingezeichnetem Fünfeck, einander gegenüber liegende Seiten   und   sind parallel.

Der Rhomboederstumpf ist ein konvexes, achtflächiges Polyeder. Er setzt sich aus sechs gleichen, unregelmäßigen, aber achsensymmetrischen Fünfecken und zwei gleichseitigen Dreiecken zusammen. Er hat zwölf Ecken; an jeder Ecke treffen drei Flächen aufeinander (ein Dreieck und zwei Fünfecke oder drei Fünfecke). Sämtliche Eckpunkte liegen auf derselben Umkugel. Gegenüberliegende Flächen sind parallel. Im Stich steht der Körper auf einer Dreiecksfläche, die Fünfecke bilden quasi die Mantelfläche. Die Kantenanzahl beträgt achtzehn.

Konstruktion

Bearbeiten

Der Ursprungskörper ist ein sechsflächiges Rhomboeder, das zugleich Parallelepiped und schiefes Prisma ist. Er besteht aus sechs Rauten mit der Kantenlänge   und den charakteristischen Winkeln 72° und 108°. Sechs seiner acht Ecken liegen auf einer gemeinsamen Umkugel, die beiden Spitzen ragen darüber hinaus. Durch Abschneiden der Spitzen in der richtigen Höhe entstehen jeweils drei neue Ecken, die die dreieckigen Seiten des Rhomboederstumpfs bilden und die ebenfalls auf der gemeinsamen Umkugel liegen. Wie üblich stehen die Schnittflächen senkrecht auf der Höhenlinie des Körpers.

Fünfeckige Seitenflächen

Bearbeiten
 
Markante Größen im Sehnenfünfeck

Durch das Abschneiden werden die Rauten zu den fünfeckigen Begrenzungsflächen des Rhomboederstumpfs, jeweils zwei der Rauten-Seiten   (rot) bleiben mit dem eingeschlossenen Winkel von 72° erhalten, die beiden anderen Seiten verkürzen sich auf   (blau), die Schnittlinie   (grün) verläuft parallel zur Diagonale   (s. Grafik rechts). Die beiden neu hinzugekommenen stumpfen Winkel betragen jeweils 126°. Insbesondere sind   und   (weiterhin) parallel und alle fünf Ecken liegen auf einem Umkreis und enthalten somit drei verschiedene Sehnenvierecke (sowie zwei Spiegelungen). Siehe auch: Sehnenfünfeck.

Durch diese spezielle Wahl der Winkel bei den Rauten entstehen mehrere bemerkenswerte Verhältnisse in den fünfeckigen Seitenflächen des Rhomboederstumpfs. Dabei ist   der Umkreisradius des Fünfecks:

  • Folgende Längenverhältnisse stehen im goldenen Schnitt:  .
  •   ist zugleich Differenz und geometrisches Mittel aus   und  :  
  • Die beiden Nebendiagonalen, die jeweils mit   und   ein Dreieck bilden, haben exakt die Länge  . Zusammen mit den sonstigen Kanten ergeben sie jeweils ein spiegelsymmetrisches Trapez, dessen Spiegelachse aber nicht mit der des Fünfecks übereinstimmt.

Für das Polyeder

Bearbeiten
 
3D-Konstruktion des Dürer-Polyeders –
basierend auf nebenstehenden Formeln.
Größen des Rhomboederstumpfs mit längster Kante a
Volumen  
Oberflächeninhalt  
Umkugelradius  
1. Flächenwinkel
 (Fünfecke ü. Kante a)
  ≈ 103° 39′ 17″
 
2. Flächenwinkel
 (Fünfecke ü. Kante b)
  ≈ 76° 20′ 43″
 
3. Flächenwinkel
 (Fünfeck–Trigon)
  ≈ 114° 48′ 4″
 

Für einzelne Seitenflächen

Bearbeiten
Größen des Sehnenfünfecks
Flächeninhalt  
Umkreisradius  
2. Seitenlänge  
3. Seitenlänge  
Diagonale  
Höhe  
Größen des gleichseitigen Dreiecks
Flächeninhalt  
Umkreisradius  
Höhe  

Literatur

Bearbeiten
  • Eberhard Schröder: Dürer, Kunst und Geometrie: Dürers künstlerisches Schaffen aus der Sicht seiner „Underweysung“. Birkhäuser, Basel 1980, ISBN 3-7643-1182-7, insb. Kapitel: Rekonstruktionsanalyse an dem Kupferstich „Melancholie“, S. 64–75, dort auch ein Skizzenblatt der Vorstudie auf S. 69.
Bearbeiten