Riemannsche Submersion
Im mathematischen Gebiet der Differentialgeometrie bezeichnet man als riemannsche Submersion eine die riemannsche Metrik respektierende Submersion einer riemannschen Mannigfaltigkeit auf eine andere, die also lokal wie eine orthogonale Projektion auf den Tangentialraum der zweiten Mannigfaltigkeit aussieht.
Definition
BearbeitenSeien und zwei riemannsche Mannigfaltigkeiten und
eine Submersion.
Dann heißt eine riemannsche Submersion, wenn der Isomorphismus
eine Isometrie ist.
Konstruktion von Metriken auf Quotientenräumen
BearbeitenEine Lie-Gruppe wirke isometrisch, frei und eigentlich diskontinuierlich auf einer riemannschen Mannigfaltigkeit . Der Quotientenraum ist eine differenzierbare Mannigfaltigkeit und man hat einen Isomorphismus .
Eine Riemannsche Metrik auf wird eindeutig festgelegt durch, die Bedingung, dass dieser Isomorphismus eine Isometrie sein soll. Sie wird als Quotientenmetrik bezeichnet. Mit dieser Metrik wird die Quotientenabbildung eine Riemannsche Submersion.
Beispiele
BearbeitenDie Fubini-Study-Metrik auf dem komplex-projektiven Raum ist die Quotientenmetrik für die Standard-Wirkung der Kreisgruppe auf der „runden Sphäre“, also der Sphäre konstanter Schnittkrümmung +1. Mit dieser Metrik ist die Quotientenabbildung
also eine Riemannsche Submersion.
Für ist das die Hopf-Faserung der Standardsphäre : die Hopf-Abbildung
gibt eine Riemannsche Submersion.
O’Neill-Formel
BearbeitenDie Schnittkrümmung des Bildraumes einer riemannschen Submersion kann aus der Schnittkrümmung des Urbildraumes mit der O’Neill-Formel berechnet werden:
- .
Hierbei sind orthonormale Vektorfelder auf , ihre horizontalen Hochhebungen auf , bezeichnet den Kommutator von Vektorfeldern und ist die Projektion des Vektorfeldes auf die vertikale Distribution.
Literatur
Bearbeiten- Jeff Cheeger, David G. Ebin: Comparison theorems in Riemannian geometry. Revised reprint of the 1975 original. AMS Chelsea Publishing, Providence, RI, 2008. ISBN 978-0-8218-4417-5