Satz vom abgeschlossenen Graphen

mathematischer Satz

Der Satz vom abgeschlossenen Graphen ist ein mathematischer Satz aus der Funktionalanalysis.[1]

Formulierung

Bearbeiten

Es seien   und   Banachräume und   ein linearer Operator. Es bezeichne   den Graphen von  .

Dann ist   genau dann beschränkt (und somit stetig), wenn   ein abgeschlossener Operator ist (d. h.   abgeschlossen in  ).

Herleitung

Bearbeiten

Der Satz vom abgeschlossenen Graphen kann auf das Lemma von Zabreiko zurückgeführt werden.[2]

Ferner kann der Satz wie folgt aus dem Satz von der offenen Abbildung hergeleitet werden. Wegen der Abgeschlossenheit des Graphen ist   ein Banachraum. Trivialerweise ist   eine bijektive, lineare, beschränkte Abbildung zwischen   und  . Aus dem Satz von der offenen Abbildung folgt dann, dass die Umkehrung   ebenfalls beschränkt ist, und das impliziert die Stetigkeit von  .

Verallgemeinerung

Bearbeiten

Der Satz vom abgeschlossenen Graphen kann in der Theorie lokalkonvexer Räume auf größere Raumklassen ausgedehnt werden, siehe dazu Raum mit Gewebe, ultrabornologischer Raum oder (LF)-Raum.

Anwendung

Bearbeiten

Der Satz von Hellinger-Toeplitz ist eine Folgerung des Satzes vom abgeschlossenen Graphen.

Literatur

Bearbeiten

Einzelnachweise

Bearbeiten
  1. Hans Wilhelm Alt: Prinzip der gleichmäßigen Beschränktheit. In: Lineare Funktionalanalysis. Springer Berlin Heidelberg, Berlin, Heidelberg 2012, ISBN 978-3-642-22260-3, S. 229–236, doi:10.1007/978-3-642-22261-0_7 (springer.com [abgerufen am 27. Oktober 2022]).
  2. P. P. Zabreiko: A theorem for semiadditive functionals. In: Functional Analysis and Its Applications. Band 3, Nr. 1, 1969, ISSN 0016-2663, S. 70–72, doi:10.1007/BF01078277 (springer.com [abgerufen am 27. Oktober 2022]).