Die Shimizusche L-Funktion ist im mathematischen Teilgebiet der Algebra eine Dirichlet-Reihe, die einem total reellen algebraischen Zahlkörper zugeordnet wird. Eingeführt wurde die Shimizusche L-Funktion von Hideo Shimizu im Jahr 1963. Michael Atiyah, Harold Donnelly und Isadore Singer definierten im Jahr 1983 den Signaturdefekt des Randes einer Mannigfaltigkeit als ihre Eta-Invariante und zeigten, dass sich der Hirzebruchsche Signaturdefekt einer Cusp-Singularität einer Hilbertschen Modulfläche durch die Auswertung einer Shimizuschen L-Funktion bei oder ausdrücken lässt.

Definition

Bearbeiten

Für ein total reellen algebraischen Zahlkörper  , ein Gitter   in diesem und eine Untergruppe   maximalen Ranges in der Gruppe der total positiven und vom Gitter erhaltenen Einheiten ist dessen Shimizusche L-Funktion gegeben durch:

 

Literatur

Bearbeiten
Bearbeiten