Tetranatrium-N,N-bis(carboxylatomethyl)-L-glutamat

chemische Verbindung

Tetranatrium-N,N-bis(carboxylatomethyl)-L-glutamat (GLDA-Na4) ist das Tetranatriumsalz der L-Glutaminsäure-N,N-diessigsäure (GLDA-H4), das von der Aminosäure Glutaminsäure abgeleitet ist und sich als Komplexbildner vom Aminopolycarboxylat-Typ durch besonders hohe Bioabbaubarkeit und Löslichkeit auszeichnet.[4]

Strukturformel
Strukturformel von Tetranatrium-N,N-bis(carboxylatomethyl)-L-glutamat
Allgemeines
Name Tetranatrium-N,N-bis(carboxylatomethyl)-L-glutamat
Andere Namen
  • L-Glutaminsäure-N,N-diessigsäure-tetranatriumsalz
  • (S)-Glutaminsäure-N,N-diessigsäure-tetranatriumsalz
  • N,N-Bis(carboxymethyl)-L-glutaminsäure-tetranatriumsalz
  • GLDA-Na4
  • TETRASODIUM GLUTAMATE DIACETATE (INCI)[1]
  • Dissolvine® GL
Summenformel C9H9NO8Na4
Kurzbeschreibung

weißes Pulver[2]

Externe Identifikatoren/Datenbanken
CAS-Nummer 51981-21-6
EG-Nummer 257-573-7
ECHA-InfoCard 100.052.322
PubChem 44630158
ChemSpider 21161449
Wikidata Q25393000
Eigenschaften
Molare Masse 351,13 g·mol−1
Aggregatzustand

fest

Dichte

1,466 g·cm−3 (20 °C)[2]

Schmelzpunkt

280 °C (Zersetzung)[2]

Löslichkeit
  • sehr gut löslich in Wasser (ca. 1000 g·cm−3 bei 20 °C)[2]
  • sehr gut löslich in Wasser (bei pH 1 ca. 35 Gew.-%)[3]
  • löslich in Ethylenglycol (45 Gew.-%), in 5m NaOH (60 Gew.-%)[4]
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung[2]
keine GHS-Piktogramme

H- und P-Sätze H: keine H-Sätze
P: keine P-Sätze
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet.
Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa).

GLDA-Na4 wird als „grüne“ Alternative zu den am meisten verbreiteten Chelatoren Ethylendiamintetraessigsäure (EDTA) und Nitrilotriessigsäure (NTA) diskutiert.

Gewinnung und Darstellung

Bearbeiten

Ausgangsstoff für GLDA-Na4 ist L-Glutaminsäure[5] und besonders das wesentlich besser wasserlösliche und als Geschmacksverstärker in Mengen über 3 Millionen Tonnen pro Jahr hergestellte Mononatriumglutamat (MSG).[6] Zur Erzielung akzeptabler Ausbeuten wird MSG bei pH<7 in einer Cyanmethylierung mit wässrigem Formaldehyd und Cyanwasserstoff zu Natriumglutamat-diacetonitril, einem substituierten Iminodiacetonitril, umgesetzt.[7]

 
Synthese von Tetranatrium-N,N-bis(carboxylatomethyl)-L-glutamat durch Cyanmethylierung

Das Diacetonitril wird mit Natronlauge unter Abspaltung von Ammoniak in über 90 %iger Ausbeute zum Tetranatriumsalz der L-Glutaminsäure-N,N-diessigsäure hydrolysiert.[8]

Eine Verfahrensvereinfachung stellt die Verwendung von Natriumcyanid anstatt Blausäure dar.[9] Die erhaltenen Ausbeuten liegen bei 90 % mit Gehalten am Nebenprodukt Nitrilotriessigsäure von deutlich unter 0,1 Gew.-%. Die Reaktion kann sowohl diskontinuierlich als Chargenprozess, als auch als kontinuierlicher Prozess ausgeführt werden.

Eigenschaften

Bearbeiten

Tetranatrium-N,N-bis(carboxylatomethyl)-L-glutamat ist ein weißer, sehr gut wasserlöslicher, hygroskopischer Feststoff, der alkalisch reagierende (typischerweise pH 11,5) und schwach gelbe wässrige Lösungen bildet.[4] Im Gegensatz zu EDTA und NTA löst sich GLDA-Na4 in wässrigen Medien sehr gut über einen breiten pH-Bereich von 1 bis 12. Die thermische Stabilität (Zersetzung >280 °C) liegt deutlich über der von EDTA und NTA (>150 °C).[10]

Verwendung

Bearbeiten

Wegen der (derzeit) akzeptierten, aber letztlich unbefriedigenden ökologischen und toxikologischen Profile der gängigsten und auf petrochemischen Rohstoffen basierenden Komplexbildner EDTA und NTA wird weiter nach umweltverträglicheren Alternativen gesucht. Neben β-Alanindiessigsäure (β-ADA), Methylglycindiessigsäure (MGDA), Tetranatriumiminodisuccinat (IDHA) sowie Citraten und Gluconaten wurde Tetranatrium-N,N-bis(carboxylatomethyl)-L-glutamat als bioabbaubarer und weitgehend aus nachwachsenden Rohstoffen – hier L-Glutaminsäure – hergestellter Komplexbildner entwickelt. GLDA-Na4 ist nach der OECD-Methode OECD 301 D (>60 % nach 28 Tagen) als leicht biologisch abbaubar klassifiziert.[10]

Die folgende Tabelle gibt die Komplexbildungskonstanten log K von GLDA im Vergleich zu den Standards EDTA und NTA, sowie zu den bioabbaubaren Komplexbildnern Methylglycindiessigsäure (MGDA) und Tetranatriumiminodisuccinat (IDS) gegenüber mehrwertigen Metallionen wieder:

Metallionen GLDA[11] EDTA NTA[11] MGDA[12] IDS[13]
Al3+ 12,2 16,4 11,4 - 14,1
Ba2+ 3,5 7,9 4,8 4,9 3,4
Ca2+ 5,9 10,7 6,4 7,0 5,2
Cd2+ 9,1 16,5 9,8 10,6 8,4
Co2+ 10,0 16,5 10,4 11,1 10,5
Cu2+ 13,1 18,8 13,0 13,9 13,1
Fe2+ 8,7 14,3 8,9 8,1 8,2
Fe3+ 11,7 25,1 15,9 16,5 15,2
Hg2+ 14,3 21,5 14,3 - 14,9
Mg2+ 5,2 8,8 5,5 5,8 6,1
Mn2+ 7,6 13,9 7,5 8,4 7,7
Ni2+ 10,9 18,4 11,5 12,0 12,2
Pb2+ 10,5 18,0 11,5 12,1 11,0
Sr2+ 4,1 8,7 5,0 5,2 4,1
Zn2+ 10,0 16,5 10,7 10,9 10,8

EDTA weist gegenüber allen Kationen im Vergleich zu anderen Chelatoren deutlich höhere Komplexbildungskonstanten auf und bildet daher auch stabilere Komplexe als GLDA, das meist geringfügig niedrigere log K-Werte mit Metallionen als NTA besitzt.

Die wichtigste Eigenschaft von Chelatoren ist die Komplexbildung mit Calcium- und Magnesium-Ionen als wesentliche Verursacher für Wasserhärte. Chelatisierung der härtebildenden Ca2+-Ionen mit GLDA-Na4 kann die Ausfällung von Calciumcarbonat, auch bei hohen Temperaturen, verhindern und die Auflösung von Kalkablagerungen fördern. Dadurch wirkt Tetranatrium-N,N-bis(carboxylatomethyl)-L-glutamat als so genannter Builder in Wasch- und Reinigungsmitteln, indem es die Emulgatorwirkung von Tensiden verbessert.[5]

Wegen seiner sehr guten Wasserlöslichkeit und Stabilität auch bei hohen pH-Werten eignet sich GLDA-Na4 zum Ersatz von Natriumtripolyphosphat (engl. STPP) in maschinellen Geschirrspülmitteln oder phosphatfreien Waschmitteln.[14]

GLDA-Na4 erhöht die Wirksamkeit von Bioziden durch Komplexierung von Ca2+- und Mg2+-Ionen, die zur Destabilisierung der Membranen von Mikroorganismen führt und so deren Empfindlichkeit gegenüber Konservierungsmitteln und Bioziden erhöht.

Die komplexbildenden Eigenschaften von GLDA-Na4 werden in der Öl- und Gasförderung zur Auflösung von Ablagerungen von Strontiumsulfat, Bariumsulfat und Calciumsulfat und zur Verhinderung der Ausfällung schwerlöslicher Eisensalze eingesetzt.[15]

Komplexe von Spurenelementen mit Tetranatrium-N,N-bis(carboxylatomethyl)-L-glutamat finden als Mikronährstoffe (engl. micronutrients) in Düngemitteln[16] und als Lebensmittel- und Futterzusätze (Supplement) Verwendung.[17]

Einzelnachweise

Bearbeiten
  1. Eintrag zu TETRASODIUM GLUTAMATE DIACETATE in der CosIng-Datenbank der EU-Kommission, abgerufen am 29. Dezember 2019.
  2. a b c d e Eintrag zu Tetranatrium-N,N-bis(carboxylatomethyl)-L-glutamat in der GESTIS-Stoffdatenbank des IFA, abgerufen am 23. April 2016. (JavaScript erforderlich)
  3. Green chelating agent. In: Chemical Engineering. 1. Februar 2007, abgerufen am 28. April 2016.
  4. a b c Dissolvine® GL technical brochure. (PDF; 5,8 MB) In: akzonobel.com. Akzo Nobel Functional Chemicals, archiviert vom Original am 26. April 2016; abgerufen am 28. April 2016 (englisch).
  5. a b Patent US5948748: Detergent composition. Angemeldet am 2. Oktober 1997, veröffentlicht am 7. September 1999, Anmelder: Kao Corp., Erfinder: G. Hagino, S. Tagata, S. Kamioka.
  6. Glutamic Acid and Monosodium Glutamate (MSG) Market Size, Potential, Industry Outlook, Regional Analysis, Application Development, Competitive Landscape & Forecast, 2016 - 2023. In: Global Market Insights. Abgerufen am 28. April 2016.
  7. Patent WO2009109544A1: Verfahren zur Herstellung von Aminodicarbonsäure-N,N-diessigsäuren. Angemeldet am 2. März 2009, veröffentlicht am 11. September 2009, Anmelder: BASF SE, Erfinder: A. Oftring, A. Stamm, F. Wirsing, G. Braun.
  8. Patent US8399705: Alkali metal salt of glutamic acid N,N-diacetic acid, a process to prepare such salt, and the use thereof. Angemeldet am 14. August 2008, veröffentlicht am 19. März 2013, Anmelder: Akzo Nobel N.V., Erfinder: T.O. Boonstra, M. Heus.
  9. Patent WO2010139755A1: Process to prepare a chelating agent or precursor thereof using a cyanide salt. Angemeldet am 3. Juni 2010, veröffentlicht am 9. Dezember 2010, Anmelder: Akzo Nobel Chemicals International B.V., Erfinder: H. Lammers, M. Heus, T.O. Boonstra, A.M. Reichwein.
  10. a b J. Seetz, G.P. Stafford: Bound by biodegradability. In: Soap, Perfumery & Cosmetics. 2007, S. 75–76 (akzonobel.com [PDF; 1,6 MB]).
  11. a b Chelates Product Guide. (PDF; 4,9 MB) In: akzonobel.com. Akzo Nobel Functional Chemicals, archiviert vom Original am 26. April 2016; abgerufen am 28. April 2016 (englisch).
  12. BASF SE, Technical Information, Trilon® M types: Trilon M types
  13. Lanxess AG, General Product Information: Baypure
  14. Patent US20160097020A1: Aqueous solutions containing a complexing agent in high concentration. Angemeldet am 13. Mai 2014, veröffentlicht am 7. April 2016, Anmelder: BASF SE, Erfinder: M.C. Biel, T. Greindl, M. Hartmann, W. Staffel, M. Reinoso Garcia.
  15. Patent WO2012146895A1: Treatment fluids containing biodegradable chelating agents and methods for use thereof. Angemeldet am 26. April 2012, veröffentlicht am 1. November 2012, Anmelder: Halliburton Energy Services, Inc., Erfinder: E.A. Reyes, T.D. Welton.
  16. Patent WO2015036374A2: Acidic fertilizer compositions containing a metal complex of glutamic acid N,N′-diacetic acid or iminosuccinic acid. Angemeldet am 9. September 2014, veröffentlicht am 19. März 2015, Anmelder: Akzo Nobel Chemicals International B.V., Erfinder: A.M. Reichwein, M.H.J. Bugter.
  17. Patent WO2011051295A1: Use of a metal supplement in animal feed. Angemeldet am 26. Oktober 2010, veröffentlicht am 5. Mai 2011, Anmelder: Akzo Nobel Chemicals International B.V., Erfinder: C.T.J. Wreesmann, A.M. Reichwein, M.A. van Doorn, J. Martintereso López.