Treppenfunktion (reelle Funktion)

reelle Funktion, die nur endlich viele Funktionswerte annimmt und stückweise konstant ist

Eine Treppenfunktion ist in der Mathematik eine spezielle reelle Funktion, die nur endlich viele Funktionswerte annimmt und stückweise konstant ist. Dadurch erhält der Funktionsgraph einer Treppenfunktion sein charakteristisches und namensgebendes Aussehen, das einer auf- und absteigenden Treppe ähnelt.

Beispiel einer Treppenfunktion

Definition

Bearbeiten

Eine Funktion

 

heißt eine Treppenfunktion, wenn es Zahlen   mit

 

gibt und Zahlen  , sodass

 

und alle   gilt. Dabei sind die Funktionswerte   an den „Stützstellen“ beliebig, aber reell.[1]

Verwendung

Bearbeiten

Treppenfunktionen benutzt man auch zur Approximation von Integralen. Das Integral einer Treppenfunktion wird durch

 

definiert. Der Vorteil ist hier, dass man ohne Grenzwertprozess auskommt und nur endliche Summen hat. In der Summenformel bezeichnet   den Wert von   auf dem Intervall   sowie   die Länge dieses Intervalls, also  .

Bereits durch die einfache Definition des Integrals einer Treppenfunktion hat man ein starkes mathematisches Hilfsmittel gewonnen: Jede beschränkte, stetige Funktion   mit   kann beliebig genau durch eine Treppenfunktion approximiert werden. Also kann auch das Integral dieser Funktion beliebig genau approximiert werden. Diese Tatsache ist ein wichtiges Fundament für die Definition des Riemann-Integrals. Auf diese Weise hat Jean Gaston Darboux die Einführung des Riemann-Integrals vereinfacht.

Beispiele

Bearbeiten

Abgrenzung

Bearbeiten

Die Treppenfunktionen sind sowohl den einfachen Funktionen als auch den Sprungfunktionen sehr ähnlich, sollten aber nicht mit diesen verwechselt werden.

So nehmen beispielsweise einfache Funktionen auch nur endlich viele Werte an, können aber trotzdem viel komplexer sein, da sie nicht über Intervalle auf dem Grundraum definiert werden, sondern über messbare Mengen. So ist beispielsweise die Dirichlet-Funktion eine einfache Funktion, aber keine Treppenfunktion im hier genannten Sinne, da sie überabzählbar viele Sprungstellen hat und in keinem noch so kleinen Intervall konstant ist. Außerdem werden einfache Funktionen auf beliebigen Messräumen definiert, wohingegen Treppenfunktionen bloß auf   definiert werden. Allerdings ist jede Treppenfunktion auch immer eine einfache Funktion.

Die Sprungfunktionen sind wie die Treppenfunktionen auch auf den reellen Zahlen definiert. Allerdings sind sie immer monoton wachsend, können aber auch abzählbar viele Sprungstellen haben.

Verallgemeinerung

Bearbeiten

Eine stochastische Verallgemeinerung einer Treppenfunktion ist ein elementarer vorhersagbarer stochastischer Prozess. Er spielt für die Konstruktion des Ito-Integrals eine ähnliche Rolle wie die einfachen Funktionen für die Konstruktion des Lebesgue-Integrals.

Bearbeiten

Einzelnachweise

Bearbeiten
  1. Otto Forster: Analysis 1. Differential- und Integralrechnung einer Veränderlichen. 11., erweiterte Auflage. Springer Spektrum, Wiesbaden 2013, ISBN 978-3-658-00316-6, S. 105, doi:10.1007/978-3-658-00317-3.