Wikipedia:Redaktion Physik/Qualitätssicherung/Archiv/2019/August
Diese Seite ist ein Archiv abgeschlossener Diskussionen. Ihr Inhalt sollte daher nicht mehr verändert werden.
Bei der Archivierung der Diskussion sollte der Baustein Um ein bereits archiviertes Thema wieder aufzugreifen, kann es unter Verweis auf den entsprechenden Abschnitt dieser Archivseite erneut aufgegriffen werden:
|
Hallo, für alle Interessenten ein Hinweis auf eine laufende Löschdiskussion: [1]
Gruß --Juesch (Diskussion) 21:55, 23. Aug. 2019 (CEST)
- Die Löschdiskussion wurde mit löschen entschieden und beendet. Somit ist das Thema hier ebenfalls erledigt. --Dogbert66 (Diskussion) 08:22, 2. Sep. 2019 (CEST)
- Archivierung dieses Abschnittes wurde gewünscht von: Dogbert66 (Diskussion) 08:22, 2. Sep. 2019 (CEST)
Hallo Jungs, ich wollte letztens ein paar Verbesserungen in den Artikel Fehlerfortpflanzung einbringen. Insbesondere das Bild hier, welches die Fehlerfortpflanzung und die häufig eingesetzte lineare Näherung zeigt:
Leider hat @Saure das Bild mit einem nicht selbsterklärenden Bild einer Tangente ersetzt in dem keine Größen eingezeichnet sind.
Außerdem hat er die Änderungen, welche ich belegt habe zurückgesetzt: https://de.m.wikipedia.org/wiki/Spezial:Mobiler_Unterschied/191733183
Im Quelltext standen auch die Gleichungen aus dem Paper, welches ich zitiert habe, https://archive.org/details/jresv70Cn4p263
Ein Punkt, der mich stört ist, dass im Artikel
nicht als empirischer Standardfehler bezeichnet wird.
Ein anderer verbesserungswürdiger Punkt ist, dass Nicht als root mean squared error bezeichnet wird (und auch nicht klar ist woher diese Formel kommt). Eine Rechnung (leider mit Rechenfehler!) findet sich z.B. unter https://lp.uni-goettingen.de/get/text/5823 Im bisherigen Artikel ist der Korrelationsterm, wo die Kovarianz auftritt, um einen Faktor 1/N falsch ist (Siehe Ku https://archive.org/details/jresv70Cn4p263 Gleichung 2.2 . Der vordere Teil in der Formel auf Wikipedia ist richtig, da Ku dort die Varianz durch N teilt, was bei uns äquivalent als Standardfehler zum Quadrat da steht)
Der Unterschied im Fehlermaß zwischen den Formeln, wo der maximale absolute Fehler und der root mean squared error berechnet wird ist auch nicht deutlich.
Da ich keinen Editwar anfangen will, bitte ich euch um eine dritte Meinung! Mfg biggerj1 (Diskussion) 09:33, 28. Aug. 2019 (CEST)
- Wer die genormten Begriffe „Fehler“ (bzw. Messabweichung) – „Fehlergrenze“ – „Unsicherheit“ (bzw. Messunsicherheit) durcheinander wirft, DIN 1319,[1][2][3]
- wer nicht erkennt, dass die dafür jeweils angegebenen Zusammenhänge bezüglich Fehlerfortpflanzung in verschiedenen Kapiteln stehen,
- wer dann weiter unter der Überschrift „Voneinander unabhängige fehlerbehaftete Größen“ einen einzelnen und nicht einmal existierenden Korrelationsterm einbringt,
- der darf sich nicht wundern, dass das revertiert wird.
- Beispielsweise stehen die Formeln
- und
- unter verschiedenen Überschriften, die man einfach beachten muss, dann wird auch der Unterschied deutlich. --der Saure 11:46, 28. Aug. 2019 (CEST)
- ↑ Standard Uncertainty and Relative Standard Uncertainty, The NIST Reference on Constants, Units and Uncertainty, abgerufen am 16. März 2018.
- ↑ IEC 60050, siehe DKE Deutsche Kommission Elektrotechnik Elektronik Informationstechnik in DIN und VDE: Internationales Elektrotechnisches Wörterbuch Einträge 311-01-02 ff
- ↑ JCGM 200:2012 International vocabulary of metrology – Basic and general concepts and associated terms (VIM), Definition 2.16. (PDF; 3,8 MB; abgerufen am 19. Januar 2015).
- Leider ist der jetzige Artikel selbst nicht konsistent! Laut https://physics.nist.gov/cgi-bin/cuu/Info/Constants/definitions.html handelt es sich bei Unsicherheiten um Standardabweichungen. Auf der anderen Seite führt der Artikel ein, welcher jedoch der (empirische) Standardfehler ist.
- Selbst wenn die Zusammenhänge bezüglich dem Root mean squared error und dem maximalen Fehler in anderen Kapiteln stehen, so fehlt eine Diskussion, dass es unterschiedliche Fehlermaße sind. Z.B. war bei der Formel nicht erwaehnt, dass es ein Root mean squared error ist. Es hiess einfach das ist der Fehler. Es muss aber gesagt werden, mit welchem Mass der Fehler berechnet wird: das geht prinzipiell wie hier: https://lp.uni-goettingen.de/get/text/5823 (Achtung es gibt Rechenfehler auf der Seite)
- Richtig, bei unabhängigen fehlerbehafteten Größen gibt es keine Korrelationsterme, aber die stehen in der Rechnung prinzipell drin und sind eben 0.
- Dem Artikel fehlte bisher eine Illustration vollständig. Mein Vorschlag für den Abschnitt Grundprinzip (mit der neuen Grafik) führt alle Grössen ein und ist besser als das unbeschriftete Bild, welches jetzt im Artikel ist:
„
Das Grundprinzip der Fehlerfortpflanzung kann anhand von monotonen Funktionen erklärt werden. Ist der die Fehlergrenze gegeben, d. h. variiert im Intervall , so variiert im Interval , siehe nebenstehendes Bild.
Häufig wird statt der Funktion eine Taylorentwicklung in erster Ordnung zur Abschätzung des Fehlers benutzt (siehe unten).“
- Offenbar gibt es verschiedene Sprachgewohnheiten. Ich habe sorgfältig in den entsprechenden Regelwerken recherchiert (nicht bei Einzelmeinungen). Überflüssige Einzelheiten wie „Root mean squared error“ kann man für Leser omA getrost weiter als Fehler bezeichnen; das „Root mean square“ sieht man auch ohne Erklärung. Der „maximale Fehler“ ist kein Fehler, sondern eine Fehlergrenze (Grenzabweichung, Abweichungsgrenzbetrag). Was „unterschiedliche Fehlermaße“ sein sollen, bleibt unerklärt. Es handelt sich vermutlich um unterschiedliche Begriffe, die ich nicht zum dritten Mal angeben will.
- Das erneut eingestellte Bild mit seiner Legende ist eine schier ungeahnte Fundgrube für Unqualifiziertes.
- Da steht mal „Fehlergrenze “ und dann „Unsicherheit “, ob wohl es sich um den Fehler handelt.
- Anmerkung: Die Bildlegende ist nachträglich geändert worden (19:19, 28. Aug. 2019). --der Saure 10:54, 30. Aug. 2019 (CEST)
- Der richtige Wert wird als ein Mittelwert gekennzeichnet, obwohl zur Definition des Fehlers eines einzelnen Messwertes gar keine Statistik möglich ist.
- Völlig überflüssig werden -Werte angegeben, welche auf der linearen Näherung basieren.
- Tatsächlich findet die Fehlerfortpflanzung nicht längs der Geraden statt, sondern längs der Fortpflanzungsfunktion; diese ist es, die liefert.
- Interessant ist die nirgends erklärte Erfindung „echter Fehler“; gibt es demnach noch unechte Fehler?
- Die echten Fehler haben dann das Formelzeichen ?
- Die Einschränkung auf monotone Funktionen ist keineswegs erforderlich. Die Taylorreihe hat eine andere Voraussetzung.
- Ich habe inzwischen ein besseres Bild gefunden und eingefügt – mit hoffentlich korrekter Legende. --der Saure 18:46, 28. Aug. 2019 (CEST)
- "das „Root mean square“ sieht man auch ohne Erklärung" halte ich für eine unqualifizierte Meinung! Es ist sehr wohl interessant zu zeigen, wie der Ausdruck hergleitet wird. Wie von mir bereits eingebaut:
„... als Mass für den Fehler in die Quadratwurzel der mittleren quadratischen Abweichung<ref name = Ku></ref> benutzt. Die Einzelfehler werden wie oben durch die lineare Näherung
berechnet, mit den mittleren Unsicherheiten , ergibt sich<ref name = Ku></ref>:
wobei “
- Also... ich habe mal das Wort "Unsicherheit" hier in der Bildbeschreibung entfernt, weil Unsicherheit wohl fuer Standardabweichungen stehen, siehe https://physics.nist.gov/cgi-bin/cuu/Info/Constants/definitions.html
- Dass da ein Mittelwert steht wurde niemals gesagt. Das ist deine Interpretation eines Symbols!
- Tatsächlich musst du unterscheiden zwischen Fehlern, welche durch 1) Fehlerfortpflanzung nach Taylorentwicklung in 1. Ordnung erhalten werden und Fehlern (gekennzeichnet in rot mit ), welche durch 2) Benutzung der "vollen" Funktion erhalten werden. Letztere sind im Bild mit gekennzeichnet.
- "Die Einschränkung auf monotone Funktionen ist keineswegs erforderlich". Etwas salopp: Was machst du, wenn du Fehlerfortpflanzung mithilfe der Taylorreihe in 1. Ordnung machen willst und du dich gerade dummerweise bei einem Hochpunkt von y(x) befindest (wo die Ableitung verschwindet). Dann kannst du keine Fehlerfortpflanzung mithilfe der Taylorreihe in 1. Ordnung machen.
- Warum ist in dem anderen Bild von dir denn bitte schön die Sekante mit deinem komischen Dreieck eingezeichnet? Das f(x) ist auch nicht definiert. Warum wird zwischen den Symbolen f und y gesprungen?
- Warum gehst du nicht auf die Fehler im Artikel ein, die da wären:
- 1) es wird nicht auf den Standardfehler verwiesen, obwohl dieser gemeint ist.
- 2) Im bisherigen Artikel ist der Korrelationsterm, wo die Kovarianz auftritt, um einen Faktor 1/N falsch ist (Siehe Ku https://archive.org/details/jresv70Cn4p263 Gleichung 2.2 . Der vordere Teil in der Formel auf Wikipedia ist richtig, da Ku dort die Varianz durch N teilt, was bei uns äquivalent als Standardfehler zum Quadrat da steht)
- biggerj1 (Diskussion) 19:04, 28. Aug. 2019 (CEST)
Mit der Referenz "Ku" in der Qs-Disk #Fehlerfortpflanzung ist vermutlich H.H.Ku: Notes in the Use of Propagation of Error Formulas, Journal of Research of the National Bureau of Standards, Vol. 70C, No. 4, Oct-Dec 1966 gemeint. --Dogbert66 (Diskussion) 22:41, 2. Sep. 2019 (CEST)
- Vorsicht: Das NIST definiert in Deinem Link die Bedeutung von standard uncertainty . Dass ist nicht dasselbe wie die Standardabweichung. Vielmehr ist es der Erwartungswert der Standardabweichung. In der mir bekannten deutschsprachigen Literatur wird durchgängig als "Unsicherheit" oder "Fehler" bezeichnet. Wobei letzteres eher bei älteren Texten der Fall ist und allgemein nicht mehr empfohlen wird. In jedem Fall kann man nicht einfach das Wort "Unsicherheit" durch "Standardabweichung" ersetzen. ---<)kmk(>- (Diskussion) 22:24, 28. Aug. 2019 (CEST)
- 1. Das alte Bild, das jetzt hier in der Diskussion steht, finde ich intuitiv. Es zeigt, wie die Fehler bei der Rechnung von einer Größe auf eine andere übergehen, und das eine Linearisierung dabei zu Abweichungen führen kann. Das Bild mit der Sekante im Artikel finde ich dagegen nicht erhellend. Dort stört nicht nur die Sekante, sondern mich stört auch, dass dort ein lokales Maximum in der Nähe ist. Die Bildunterschrift muss natürlich zum Artikel passen. Ggf. sollte die Grafik auch anpassbar sein, es ist ja im svg-Format.
- 2. Für das ist die Bezeichnung "empirischer Standardfehler" konsistent, soweit ich sehe.
- 3. Das mit Korrelationsterm würde ich nicht root mean square nennen, denn es gehen schließlich nicht nur "squares" ein. Deine Formel mit dem einmaligen 1/N kommt mir nicht plausibel vor, ich sehe es auch nicht in der englischen Quelle, da steht 1/N vor jedem oder vor keinem Term. Oder ich finde es nicht, dann könntest du die Gleichungsnummer angeben.
- 4. Unter Grundlagen würde keine Einschränkung zur Funktion machen, weder "monoton" (das mag die Erklärung erleichtern, ist aber nicht nötig; auch die monotone Funktion kann dy/dx=0 haben) noch "glatt". Denn es ist bei Fehler mit Vorzeichen und auch Fehlergrenzen eigentlich nicht nötig, können auch direkt in eingesetzt werden. Für den hier dargestellten Formalismus wird nur die (einfache) Differenzierbarkeit Messunsicherheiten benötigt. (Entsprechend könnte auch der Taylor ganz raus, Linearisierung reicht. Nach GUM (Norm) gibt es nur Linearisierung oder die hier nicht erwähnte Monte-Carlo-Simulation.)
- --M.J. (Diskussion) 22:47, 30. Aug. 2019 (CEST)
@Biggerj1: Da du nicht die Diskussionseite des Artikels aufgerufen hast, sondern die Redaktion Physik/Qualitätssicherung, möchte ich Dritte Meinungen abwarten, statt deinen weiteren merkwürdigen Darlegungen zu widersprechen, was dringend nötig wäre, wenn deine Darlegungen überhaupt eine Chance auf Erfolg haben sollten. --der Saure 10:32, 30. Aug. 2019 (CEST)
- Das gegenwärtig im Artikel vorhandene Bild steht unangefochten seit Jahren im von Mathematikern gepflegten Artikel Differentialrechnung.
- Ich habe noch ein weiteres Bild im Artikel Differential (Mathematik) gefunden, dort ebenfalls seit Jahren unangefochten. Auch hierzu lässt sich Kritik anbringen wegen der Strecke , das Bild ist aber erfreulich klar und frei von fehlerhaftem Ballast.
- Wegen anderwärtiger Auslastung werde ich für einige Wochen bei WP nur sporadisch reinschauen können. --der Saure 16:07, 2. Sep. 2019 (CEST)
- Es geht hier doch nicht darum, die Differentialrechnung zu erklären.--M.J. (Diskussion) 18:55, 5. Sep. 2019 (CEST)
- Dank dieser grundsätzlichen Aussage habe ich das Kapitel „Grundlagen“ gekürzt. Auf ein Bild kann ganz verzichtet werden.
- Laut Standardfehler wird anstelle dieses Begriffs in den Naturwissenschaften und der Metrologie aktuell immer mehr der durch den GUM geprägte Begriff Standardunsicherheit verwendet.
- Die Formeln stehen in Übereinstimmung mit DIN 1319–3. --der Saure 15:18, 16. Sep. 2019 (CEST)
- War der Wunsch nach einem Bild welcher die Idee hinter der Fehlerfortpflanzung verdeutlicht nicht Ausgangspunkt für die Diskussion? Ich würde ein Bild im Artikel begrüßen. 2A01:C22:D051:C000:6511:78CE:DD09:7528 00:55, 18. Sep. 2019 (CEST)
- Es geht hier doch nicht darum, die Differentialrechnung zu erklären; für diese gibt es Bilder in verschiedenen Artikeln. Die Herleitung der Fehlerfortpflanzung setzt die Differentialrechnung als bekannt voraus; nach dem Prizip der WP wird Bekanntes nicht wiederholt, sondern auf Bekanntes wird verlinkt. Das Kapitel „Grundlagen“ enthält gegenwärtig 4 Links, von denen 3 auch auf Tangenten-Bilder führen.
- Die Fehlerfortpflanzung selber ist ein reiner Rechen-Formalismus, der von jeder Tangenten-Vorstellung unabhängig ist. Ferner kommt die Fehlerfortpflanzung in den 4 Grundrechenarten sogar ohne Differentialrechnung aus. --der Saure 10:30, 18. Sep. 2019 (CEST)
- @Saure: Ja, es geht hier nicht um die Differentialrechnung. Genau deshalb ist das am Anfang dieser Diskussion stehende Bild aber besonders interessant: es illustriert den Zusammenhang von , , und . Und man erkennt auch, warum und unterschiedlich groß sein können.
- D.h. a) das Bild ist (mit entsprechendem Begleittext) durchaus interessant, und b) es ist besser geeignet als die reinen Tangentenbilder, die an anderen Stellen verwendet werden. --Dogbert66 (Diskussion) 11:12, 18. Sep. 2019 (CEST)
@Dogbert66: Das ganz oben in dieser Diskussion stehende Bild behandelt u.a. die Größen und , die in der ganzen Fehlerrechnung nicht vorkommen. Wenn als „der Fehler“ der Ergebnisgröße angesehen wird, dann ist der Unterschied zwischen und ein durch die lineare Näherung zusätzlich entstehender Fehler, also ein Fehler des Fehlers; diesen behandelt die Fehlerrechnung überhaupt nicht. Damit ist auch die Erkenntnis, dass und unterschiedlich groß sein können, für die Fehlerfortpflanzung belanglos. (Im Bild ist zu Demonstrationszwecken viel zu groß für eine lineare Näherung.) Der Fehler wird immer als so klein vorausgesetzt, dass in der Taylorreihe alles jenseits des linearen Gliedes zu vernachlässigen ist; das ist gleichbedeutend damit, dass der Unterschied zwischen und zu vernachlässigen ist. Bei groben Fehlern helfen Fehlerfortpflanzungsregeln überhaupt nicht, da muss neu gerechnet werden.
Das Bild und seine Legende zeigen, dass der Zeichner/Verfasser die genormten Begriffe „Fehler“ (bzw. Messabweichung) – „Fehlergrenze“ – „Unsicherheit“ (bzw. Messunsicherheit) durcheinander wirft; das ist völlig unbrauchbar. Das Bild veranschaulicht, dass die lineare Näherung bei zu großem eine nicht mehr brauchbare Näherung ist. Aber die lineare Näherung ist, genauso wie die Differentialrechnung, nicht Gegenstand der Fehlerfortpflanzungsregeln. --der Saure 21:02, 18. Sep. 2019 (CEST)
- @der Saure: Wenn ich deine Kritik richtig verstehe, störst du dich daran, dass die Legende des Bildes Begriffe ungenau verwendet, die Kritik geht also nicht primär gegen das Bild. Kannst du die Legende verbessern? Ich denke das Bild motiviert intuitiv, warum man die lineare Fehlerfortpflanzung benutzt und zeigt gleichzeitig deren Einschränkung. Für mich als Leser wären das interessante Punkte. Findest du nicht auch? 2A01:C23:7802:8700:C1BE:4CF7:846B:F0FD 10:58, 19. Sep. 2019 (CEST)
- "Ungenau" ist eine niedliche Verharmlosung für "falsch". Da das Bild in seinem ganzen Konzept die Begriffe Fehler und Fehlergrenze durcheinander wirft, ist es mit einer Verbesserung der Legende nicht getan.
- Das Bild diskutiert vor allem die Folgen einer nicht eingehaltenen linearen Näherung. Das hat mit den Regeln der Fehlerfortpflanzung nichts zu tun; Thema verfehlt. Es zeigt nicht im Geringsten, „warum man die lineare Fehlerfortpflanzung benutzt“. Bei nicht eingehaltener Linearität, also bei groben Fehlern helfen Fehlerfortpflanzungsregeln überhaupt nicht, da muss neu gerechnet werden. --der Saure 12:01, 19. Sep. 2019 (CEST)
- Korrigiere mich, aber illustriert das Bild nicht korrekt die Annahmen, welche für die Fehlerfortpflanzung einer Funktion *einer* Variablen getroffen werden? biggerj1 (Diskussion) 12:17, 19. Sep. 2019 (CEST)
- Das Bild diskutiert vor allem die Folgen einer nicht eingehaltenen linearen Näherung. Das hat mit den Regeln der Fehlerfortpflanzung nichts zu tun, unabhängig von der Anzahl unabhängiger Variabler. --der Saure 13:32, 19. Sep. 2019 (CEST)
- Ich akzeptiere deine Meinung. Allerdings zeigt für mich das Bild die Grundidee, warum man die Fehlerfortpflanzung durch Linearisierung rechnet. Was sagen die anderen Teilnehmer hier? Wollen wir so ein Bild? Hilft es beim Verständnis? biggerj1 (Diskussion) 23:48, 19. Sep. 2019 (CEST)
- Das Bild zeigt insbesondere, wie sich bei der Fehlerfortpflanzung der Fehler in einer Größe auf den der neuen Größe auswirkt. Dies ist aber nur implizit enthalten, nicht beschrieben. Nur weil die lineare Näherung nicht mehr gültig ist, ist diese Transformation klar sichtbar. Insofern hilft es beim Verständnis. Aber es ist nicht optimal.
- @Saure, könntest du ein, zwei Bilder zeichnen, die deinen Ansprüchen genügen und möglichst viele Fehlerarten erklärt. Wenn es technisch schwierig für dich umzusetzen ist, würde es per Hand auf Papier reichen. Ich würde es dann in eine svg oder png o.ä. übertragen. @alle, noch besser fände ich, wenn sich jemand zur Übertragung findet, dem der Artikel zugänglicher ist; mir ist die Beschreibungsweise des ganzen Artikels schwer verständlich.--M.J. (Diskussion) 22:41, 22. Sep. 2019 (CEST)
- Ich akzeptiere deine Meinung. Allerdings zeigt für mich das Bild die Grundidee, warum man die Fehlerfortpflanzung durch Linearisierung rechnet. Was sagen die anderen Teilnehmer hier? Wollen wir so ein Bild? Hilft es beim Verständnis? biggerj1 (Diskussion) 23:48, 19. Sep. 2019 (CEST)
- Das Bild diskutiert vor allem die Folgen einer nicht eingehaltenen linearen Näherung. Das hat mit den Regeln der Fehlerfortpflanzung nichts zu tun, unabhängig von der Anzahl unabhängiger Variabler. --der Saure 13:32, 19. Sep. 2019 (CEST)
Dass sich eine Änderung (oder ein Fehler) einer Größe (unabhängige Variable) in aller Regel auf die Änderung (oder den Fehler) der neuen Größe (abhängige Variable) auswirkt, ist eine derartige Binsenweisheit, dass es dazu keiner Zeichnung bedarf.
Zur linearen Näherung gibt es eine Veranschaulichung, die nicht dahin ausweicht, wo die lineare Näherung nicht mehr gültig ist. Die lineare Näherung ist aber (genauso wie die Differenzialrechnung) nicht Gegenstand des Artikels. Deswegen bedarf sie in diesem Artikel auch nur der Verlinkung (im Artikel vorhanden), aber keiner Zeichnung.
Wenn ich eine Veranschaulichung zur den verschiedenen Arten von Fehlerfortpflanzung wüsste, dann hätte ich diese in den Artikel eingestellt. Dank für das Hilfsangebot, aber zeichen für WP kann ich selber. (Dass ich kein Programm habe, mit dem ich unmittelbar svg erzeugen kann, liegt auf einer anderen Ebene.) --der Saure 14:07, 23. Sep. 2019 (CEST)
- Ich teile die Meinung, dass eine Skizze überflüssig ist nicht. Dieser Beispielartikel zeigt unter anderem auch eine sehr gute Skizze zur Fehlerfortpflanzung: https://www.research-collection.ethz.ch/handle/20.500.11850/82620
biggerj1 (Diskussion) 17:26, 23. Sep. 2019 (CEST)
- Du schreibst nicht, welches Bild in deinem Beleg du meinen könntest. Jedenfalls sehe ich kein einziges Bild, das die Fehlerfortpflanzung beleuchtet.
- Dass bei einer Funktion zu jedem ein gehört, ist eine derartige Binsenweisheit, dass es dazu keiner Zeichnung bedarf.
- Du solltest dir über das Kernproblem der Fehlerfortpflanzung im Klaren sein: Fehlerfortpflanzung wird erst da interessant, wo es mehrere unabhängige Variable gibt. Dazu hast du nichts zu bieten gehabt bis auf ein paar mißverstandene Formeln, worauf dich Benutzer:KaiMartin hingewiesen hat (28. Aug.), und auf eine das Thema verfehlende Zeichnung, wozu du meine Meinung akzeptiert hast (23:48, 19. Sep.). Die von dir aufgerufene unglaublich langwierige Sicherung der Qualität dürfte in Blick auf deine Vorstellungen damit abgeschlossen sein. --der Saure 09:00, 24. Sep. 2019 (CEST)
- Figure 2. Wenn die anderen Teilnehmer hier für schließen sind, dann bitte schließen. Mfg. biggerj1 (Diskussion) 10:37, 24. Sep. 2019 (CEST)
- Figure 2 stellt dar:
- eine lineare Näherung zum Zusammenhang und nichts zu . Das veranschaulicht also nur die Binsenweisheit und nichts zum Kernproblem der Fehlerfortpflanzung.
- einen Streubereich von Werten. Streuung ist aber ein Problem der Fehlerrechnung und nicht der Fehlerfortpflanzung.
- Das ist es also, was du im Rahmen der Qualitätssicherung zur Fehlerfortpflanzung zu bieten hast! --der Saure 13:17, 24. Sep. 2019 (CEST)
Im Gegensatz zu dir versuche ich gerade konstruktiv Vorschläge zur Illustration des Artikels einzubringen. Du bringst hauptsächlich Ablehnung ein und unnötig unsachliche Äußerungen, wie "Das ist es also, was du im Rahmen der Qualitätssicherung zur Fehlerfortpflanzung zu bieten hast!". Wie gesagt: Falls die anderen hier keinen Verbesserungsbedarf sehen, kann der Beitrag von mir aus geschlossen werden.biggerj1 (Diskussion) 18:16, 24. Sep. 2019 (CEST)
- Ich sehe hier eigentlich deutlichen Verbesserungsbedarf, ein Bild würde auch nur wenig ändern, könnte aber ein Anfang sein. Ich hatte dazu meine Diskussion mit dem Sauren vor eineinhalb Jahren und habe keine Lust auf eine weitere. Es ist sein Artikel. Wer mit dem Text solche Verständnisschwierigkeiten hat wie ich, wird sich ein Buch nehmen oder sich die Sache selbst überlegen. Leider gibt es auch keinen Literaturhinweis.--M.J. (Diskussion) 23:21, 30. Sep. 2019 (CEST)
- Ich habe vor einiger Zeit im Artikel 2 Bilder eingefügt, die nun kleine Abweichungen/Fehler behandeln, und nicht wie bei Benutzer:Biggerj1, der Fehlergrenzen behandelt, und diese auch noch dort wo sie nicht klein sind. Nach wie vor meine ich, dass sich der Kern des Artikels, die verschiedenen Fortpflanzungsregeln für systematische Fehler, zufällige Fehler und Fehlergrenzen, nicht durch Bilder vertiefen lässt. (Nach meiner Auffassung beleuchten sämtliche Bilder die Differentialrechnung, aber nicht die Fehlerfortpflanzung. Ich zitiere zu früheren Bildvorschlägen: „Es geht hier doch nicht darum, die Differentialrechnung zu erklären.--M.J. (Diskussion) 18:55, 5. Sep. 2019 (CEST)“)
- Nach so langer Ruhe sehe ich die Diskussion für erledigt an, aber das "Erledigt" einzufügen, steht mir nicht zu. --der Saure 16:29, 1. Dez. 2019 (CET)
- Danke, dass du dich für eine Bebilderung entschieden hast - ich halte das für gut. Ich habe noch den Standardfehler verlinkt, der in einer Formel benutzt wurde, aber nicht verlinkt war. Wenn das so oder ähnlich drin bleibt, ist es für mich erledigt. Beste Grüße biggerj1 (Diskussion) 10:01, 7. Dez. 2019 (CET)
- Archivierung dieses Abschnittes wurde gewünscht von: biggerj1 (Diskussion) 08:28, 9. Dez. 2019 (CET)
Abschnitt Anwendungen in Gradient (Mathematik)
In der obigen QS-Diskussion #Gradientkraft und Gradientenkraft (vermutlich in naher Zukunft im Archiv zu finden) hat biggerj1 eine Stelle in der de-Wiki vermisst, in der Kräfte zusammengefasst sind, die durch einen Gradienten verursacht werden. Nachdem festgestellt wurde, dass "Gradientkraft" nur von den Meteorologen verwendet wird und "Gradientenkraft" kein etablierter Begriff ist (sondern eine Falschschreibung), verbleibt als Übersicht über durch Gradienten verursachte Kräfte der Abschnitt Gradient (Mathematik)#Anwendungen, der allerdings in folgenden Punkten zu verbessern wäre:
- der Abschnitt hat derzeit mehr den Charakter einer Liste, die auf Fachgebiete verweist, als dass man dort zu den Artikeln der jeweils zutreffenden Beispiele geführt wird.
- der Artikel Konservative Kraft ist einleitend zu verlinken.
- zu Transportphänomenen im allgemeinen ist ein eigener Unterabschnitt/Paragraph zu ergänzen.
Gerne können hier weitere Kritikpunkte am Abschnitt Gradient (Mathematik)#Anwendungen geäußert werden. --Dogbert66 (Diskussion) 11:20, 4. Aug. 2019 (CEST)
- Ich habe gerade mal dem Abschnitt Gradient (Mathematik)#Anwendungen eine neue Struktur gegeben, die die obigen Punkte berücksichtigt. Vom EInstellungsgrund her kann diese QS-Disk somit geschlossen werden. Ich entferne schonmal den QS-Baustein, bitte hier aber darum, dass nochmal jemand über den neuen Abschnitt drüberschaut. --Dogbert66 (Diskussion) 13:15, 5. Jan. 2020 (CET)
- Nachderm es hier keinen Widerspruch gab, schließe ich diese Disk. --Dogbert66 (Diskussion) 09:44, 3. Feb. 2020 (CET)
- Archivierung dieses Abschnittes wurde gewünscht von: Dogbert66 (Diskussion) 09:44, 3. Feb. 2020 (CET)