Dieser Artikel behandelt die Multiplikation zweier Vektoren, deren Ergebnis ein Skalar ist. Für die Multiplikation von Vektoren mit Skalaren, deren Ergebnis ein Vektor ist, siehe Skalarmultiplikation.
Das Skalarprodukt (auch inneres Produkt oder Punktprodukt) ist eine mathematische Verknüpfung zwischen Vektoren. Historisch wurde es zuerst im euklidischen Raum eingeführt. Geometrisch berechnet man das Skalarprodukt zweier Vektoren und im dreidimensionalen Anschauungsraum nach der Formel
.
Dabei bezeichnen und jeweils die Längen der Vektoren. Mit wird der Kosinus des von den beiden Vektoren eingeschlossenen Winkels bezeichnet.
In einem kartesischen Koordinatensystem gilt
Kennt man die kartesischen Koordinaten der Vektoren, so kann man mit dieser Formel das Skalarprodukt ausrechnen und mit der obigen Formel dann den Winkel zwischen den beiden Vektoren.
Wie bei der normalen Multiplikation kann das Multiplikationszeichen auch weggelassen werden: = , wenn klar ist, was gemeint ist.
In der Linearen Algebra wird dieses Konzept verallgemeinert. Ein Skalarprodukt ist dort eine Funktion, die zwei Elementen eines Vektorraums ein Element des dem Vektorraum zugrunde liegenden Skalarkörpers zuordnet. Als Notation verwendet man statt des Malpunkts meist spitze Klammern und schreibt also für das Skalarprodukt zweier Vektoren und . Ist die Bedeutung von und klar, lässt man die spitzen Klammern auch weg und schreibt . Auch die Notation ist gebräuchlich, zeigt sie doch die enge Verwandtschaft zur Matrizenmultiplikation auf.
Im Allgemeinen ist in einem reellen oder komplexen Vektorraum von vornherein kein Skalarprodukt festgelegt. Ein Raum zusammen mit einem Skalarprodukt wird als Innenproduktraum oder Prähilbertraum bezeichnet. Diese verallgemeinern den euklidischen Raum und ermöglichen damit die Anwendung geometrischer Methoden auf abstrakte Strukturen.
Vektoren im dreidimensionalen euklidischen Raum oder in der zweidimensionalen euklidischen Ebene kann man als Pfeile darstellen. Dabei stellen Pfeile, die parallel, gleichlang und gleichorientiert sind, denselben Vektor dar.
Das Skalarprodukt zweier Vektoren und ist ein Skalar, das heißt eine reelle Zahl.
Geometrisch lässt es sich wie folgt definieren:
Bezeichnen und die Längen der Vektoren und und bezeichnet den von und eingeschlossenen Winkel, so ist
.
Wie bei der normalen Multiplikation, aber seltener als dort, wird das Multiplikationszeichen manchmal auch weggelassen, wenn klar ist, was gemeint ist:
Statt schreibt man in diesem Fall gelegentlich auch .
Führt man in der euklidischen Ebene bzw. im euklidischen Raum kartesische Koordinaten ein, so besitzt jeder Vektor eine Koordinatendarstellung als 2- bzw. 3-Tupel, die meist als Spalten geschrieben werden.
Für das Skalarprodukt der Vektoren
und
in der euklidischen Ebene gilt dann:
Im dreidimensionalen euklidischen Raum gilt für die Vektoren
und
entsprechend
Zum Beispiel berechnet sich das Skalarprodukt der beiden Vektoren
Es gilt das Distributivgesetz (das Skalarprodukt ist additiv in jedem Argument):
und
für alle Vektoren , und .
Die Eigenschaften 2 und 3 fasst man auch zusammen als:
Das Skalarprodukt ist bilinear.
Weder die geometrische Definition noch die Definition in kartesischen Koordinaten ist willkürlich. Beide folgen aus den natürlichen Forderungen, dass das Skalarprodukt eine Vektors mit sich selbst das Quadrat seiner Länge ist, und dass das Skalarprodukt die obigen Eigenschaften 1–3 erfüllt.
Indem man die geometrische Definition mit der Koordinatendarstellung kombiniert, kann man aus den Koordinaten zweier Vektoren den von ihnen eingeschlossenen Winkel berechnen.
Aus
folgt
bzw.
Damit lässt sich der Winkel zwischen den Vektoren im obenstehenden Beispiel berechnen:
Zwei Vektoren und sind genau dann orthogonal, wenn ihr Skalarprodukt null ist, also
Die orthogonale Projektion von auf die durch den Vektor gegebene Richtung ist der Vektor mit Komponente
Die Projektion ist der Vektor, dessen Endpunkt der Lotfußpunkt vom Endpunkt von auf die durch bestimmte Gerade durch den Nullpunkt ist. Der Vektor steht senkrecht auf .
Ausgehend von der Darstellung des euklidischen Skalarprodukts in kartesischen Koordinaten definiert man in der linearen Algebra das Standardskalarprodukt im -dimensionalen Koordinatenraum wie folgt:
Sind
und
zwei Vektoren aus , so ist ihr Skalarprodukt
Häufig wird das Skalarprodukt statt mit einem Malpunkt durch spitze Klammern bezeichnet und man schreibt statt .
Stehen zwei Vektoren und aufeinander senkrecht (orthogonal), so gilt
.
Damit lässt sich auf einfache Weise überprüfen, ob zwei Vektoren zueinander orthogonal sind.
Ist einer der beiden Vektoren ein Einheitsvektor, so ergibt das Skalarprodukt die Länge der Projektion des anderen Vektors auf die vom Einheitsvektor definierte Gerade.
Definition des Standardskalarproduktes im komplexen Vektorraum
Man definiert im Fall des komplexenVektorraums über dem Körper das Standardskalarprodukt für alle folgendermaßen:
wobei der Überstrich die komplexe Konjugation bedeutet. Alternativ könnte man auch
definieren. Beide Definitionen sind gleichwertig, denn das eine Skalarprodukt ist die komplexe Konjugation des anderen. In der Praxis ist es aber zweckmäßig, sich auf eine einzige Definition zu einigen, wobei in der Mathematik die Version bevorzugt wird, in der Physik hingegen die Version . Für beide Definitionen gilt und wie im Reellen , da aufgrund der Definition ist und im Gegensatz zu auf die Ordnungsrelation definiert ist.
Während das Skalarprodukt im reellen Fall symmetrisch ist, d.h. es gilt , ist es im komplexen Fall hermitesch, was bedeutet.
Das Skalarprodukt ist nicht assoziativ (und kann es im eigentlichen Sinne auch gar nicht sein, weil sein Wert ein Skalar und nicht wieder ein Vektor ist).
Das Skalarprodukt ist distributiv bezüglich der Addition und Subtraktion.
In der allgemeinen Theorie werden die Variablen für Vektoren, also Elemente eines beliebigen Vektorraums, im Allgemeinen nicht durch Pfeile gekennzeichnet. Das Skalarprodukt wird meist nicht durch einen Malpunkt, sondern durch ein Paar von spitzen Klammern bezeichnet.
positiv definit: , und genau dann, wenn . (Dass reell ist, folgt aus Bedingung 2.)
Ein reeller oder komplexer Vektorraum, in dem ein inneres Produkt definiert ist, heißt Innenproduktraum oder Prähilbertraum; ist er darüber hinaus auch noch vollständig bezüglich der durch das innere Produkt induzierten Norm, wird er als Hilbertraum bezeichnet.
Abweichende Definitionen:
Oft wird jede symmetrische Bilinearform bzw. jede hermitesche Sesquilinearform als Skalarprodukt bezeichnet; mit diesem Sprachgebrauch beschreiben die obigen Definitionen positiv definite Skalarprodukte.
Im komplexen Fall ließe sich das Skalarprodukt alternativ als semilinear im zweiten und linear im ersten Argument definieren. In der Physik wird jedoch die obige Variante durchgängig benutzt (siehe Bra- und Ket-Vektoren). Siehe hierzu auch den Abschnitt „Skalarprodukt als Matrizenprodukt“ weiter unten.
Das Standardskalarprodukt lässt sich auch als Matrizenprodukt schreiben, indem man den Vektor als -Matrix (Spaltenvektor) interpretiert: Im reellen Fall gilt
Das Skalarprodukt ist ursprünglich im Rahmen der analytischen Geometrie im euklidischen Raum eingeführt worden. So ist es mit Hilfe des Skalarproduktes beispielsweise möglich, den Winkel zwischen zwei Vektoren zu berechnen:
Das Skalarprodukt ergibt sich nämlich auch aus den Beträgen der beiden Vektoren und dem Kosinus des von diesen eingeschlossenen Winkels gemäß der Formel
Um dies zu zeigen, mögen drei Vektoren, des euklidischen Raumes betrachtet werden.
Wegen des Kosinussatzes ist die Länge des dem Winkel gegenüberliegenden Vektors
Da sich als ergibt, erhält man
Berechnet man nun die Länge über das Skalarprodukt, so erhält man
Aus den Rechenregeln für das Skalarprodukt ergibt sich dann
Aus der Winkeldarstellung des Skalarprodukts folgt, dass das Skalarprodukt zweier von Null verschiedener Vektoren genau dann Null ist, wenn der Kosinus des von ihnen eingeschlossenen Winkels Null ist, wenn also die beiden Vektoren zueinander orthogonal sind.
Die senkrechte Projektion von entlang ist der Vektor mit Komponente von in Richtung . Die Projektion ist der Vektor, dessen Endpunkt der Lotfußpunkt vom Endpunkt von auf die durch bestimmte Gerade durch den Nullpunkt ist. Der Vektor steht senkrecht auf .
In einem endlichdimensionalen Vektorraum ist das in der Einleitung definierte Skalarprodukt
nicht die einzige Funktion, die der abstrakten Definition des inneren Produkts entspricht. So genügt beispielsweise auch die Funktion
für jede positiv definite, hermitesche Matrix der abstrakten Definition eines inneren Produkts. Umgekehrt, jedes gegebene innere Produkt lässt sich mit Hilfe solch einer Matrix darstellen, dies ist also die allgemeine Form eines inneren Produkts auf dem komplexenVektorraum. Lässt sich nun aber zu einem gegebenen inneren Produkt eine Orthonormalbasis finden, also eine Menge von Vektoren mit
in dieser Basis darstellen, so erhält man aus den Rechenregeln des inneren Produktes
also genau die in der Einleitung definierte Berechnung des Skalarprodukts mit Hilfe der Komponenten der beiden Vektoren und . Im endlichdimensionalen Fall lässt sich zeigen, dass es stets möglich ist, eine solche Orthonormalbasis zu finden, beispielsweise über die Gram-Schmidt-Orthogonalisierung.
Der Begriff der Orthonormalbasis und die Berechnung des inneren Produkts mit Hilfe der Komponenten der beiden Argumente lassen sich auf unendlichdimensionale Räume verallgemeinern, wobei die Vektoren üblicherweise nur als eine unendliche Summe von Vektoren aus der Orthonormalbasis dargestellt werden können und das innere Produkt daher ebenfalls eine unendliche Summe wird. Die Orthonormalbasis ist also keine Basis im Sinne der linearen Algebra, die eine Darstellung jedes Vektors als endliche Summe von Basisvektoren ermöglicht. Zur besseren Unterscheidung wird daher im unendlichdimensionalen Fall die Basis im Sinne der linearen Algebra als Hamelbasis bezeichnet.
Aus der Darstellung des Skalarprodukts mittels Winkel
folgt geometrisch, dass das Skalarprodukt invariant gegenüber längen- und winkeltreuen Abbildungen sein muss. Dies lässt sich auch analytisch nachrechnen. Längen- und winkeltreue Abbildungen werden durch unitäre Matrizen dargestellt, das sind Matrizen mit der Eigenschaft oder
wobei das Kronecker-Delta darstellt. Für die -te Komponente von und gilt
und
Somit berechnet sich das Skalarprodukt als
das Skalarprodukt bleibt also tatsächlich unverändert.