Dieser Artikel behandelt den Zahlbereich der Mathematik. Zu weiteren Bedeutungen siehe Quaternion (Begriffsklärung).
ℍ
Die Quaternionen (Singular das oder die Quaternion, von lateinischquaternio, -ionisf. „Vierheit“) sind ein Zahlenbereich, der den Zahlenbereich der reellen Zahlen erweitert – ähnlich den komplexen Zahlen und über diese hinaus. Beschrieben (und systematisch fortentwickelt) wurden sie ab 1843 von William Rowan Hamilton;[1] sie werden deshalb auch hamiltonsche Quaternionen oder Hamilton-Zahlen genannt. Olinde Rodrigues entdeckte sie bereits 1840 unabhängig von Hamilton.[2] Trotzdem wird die Menge der Quaternionen meistens mit bezeichnet.
Die Quaternionen bilden einen Schiefkörper (oder Divisionsring), bei dem die Multiplikation auch von der Reihenfolge der Faktoren abhängt, also nichtkommutativ ist. Das heißt, es gibt Quaternionen und , bei denen
Quaternionen erlauben in vielen Fällen eine rechnerisch elegante Beschreibung des dreidimensionalen euklidischen Raumes und anderer Räume, insbesondere im Kontext von Drehungen. Daher verwendet man sie unter anderem in Berechnungs- und Darstellungsalgorithmen für Simulationen sowie zur Auswertung kristallographischer Texturen.[4] Sie sind aber auch als eigenständiges mathematisches Objekt von Interesse und dienen so zum Beispiel im Beweis des Vier-Quadrate-Satzes.
Die Quaternionen entstehen aus den reellen Zahlen durch Hinzufügen (Adjunktion) dreier neuer Zahlen, denen in Anlehnung an die komplex-imaginäre Einheit die Namen , und gegeben werden. So ergibt sich ein vierdimensionales Zahlensystem (mathematisch ein Vektorraum) mit einem Realteil, der aus einer reellen Komponente besteht, und einem Imaginärteil aus drei Komponenten, der auch Vektorteil genannt wird.
Alle Quaternionen lassen sich eindeutig in der Form
mit reellen Zahlen , , , schreiben. Damit bilden die Elemente eine Basis, die Standardbasis der Quaternionen über . Die Addition ist komponentenweise und wird vom Vektorraum geerbt. Multiplikativ werden die neuen Zahlen , , gemäß den Hamilton-Regeln
verknüpft. Die Skalarmultiplikation, die ebenfalls vom Vektorraum geerbt wird[5] und bei der die Skalare als mit jedem Element vertauschbar angesehen werden, zusammen mit der Addition, dem Rechtsdistributivgesetz und den Hamilton-Regeln erlauben es, die Multiplikation von der Basis auf alle Quaternionen zu erweitern. Da so auch jeder Skalar als in eingebettet wird, kann als Unterring von aufgefasst werden.
Die so definierte Multiplikation ist assoziativ, erfüllt die beiden Distributivgesetze[6] und macht so die Quaternionen zu einem Ring. Sie ist allerdings nicht kommutativ, d. h., für zwei Quaternionen und sind die beiden Produkte und im Allgemeinen verschieden (s. u.). Das Zentrum von , also die Menge derjenigen Elemente der multiplikativen Gruppe von , die mit allen Elementen kommutieren, ist .
Im weiteren Text werden folgende Schreibweisen benutzt:
Ist eine Quaternion, dann werden ihre reellen Komponenten mit bezeichnet, und diese sind der Basis folgendermaßen zugeordnet:
Gelegentlich wird eine vektorielle Schreibweise benötigt. Dabei werden bspw. die Komponenten zu einem 3-dimensionalen Vektor zusammengefasst, so dass man mit dem 4-dimensionalen Vektor identifizieren kann.[7]
Analoge Abmachungen sollen für andere Buchstaben wie etc. gelten.
In mancher älteren Literatur wurden Quaternionen mit großen Frakturbuchstaben und die imaginären Einheiten als Einheitsvektoren mit kleinen in Fraktur bezeichnet, z. B. so:
mit .
Komplexe Zahlen tragen meist den Namen und haben die reellen Komponenten , .
Die Konstruktion der Quaternionen ist der der komplexen Zahlen analog, allerdings wird nicht nur eine neue Zahl hinzugefügt, sondern derer drei, die mit , und bezeichnet werden.
über der Basis spannen mit reellen Komponenten den 4-dimensionalen Vektorraum der Quaternionen auf. Als Vektorraum ist isomorph zu . Das Basiselement , das die reellen Zahlen injektiv einbettet (und zugleich das neutrale Element der Multiplikation darstellt), wird in der Linearkombination meist weggelassen. Die Addition und Subtraktion geschieht komponentenweise.
Vom Vektorraum wird auch die Skalarmultiplikation übernommen, also die linke und rechte Multiplikation mit einer reellen Zahl, die distributiv zu jeder Komponente multipliziert wird. Diese Skalarmultiplikation ist eine Einschränkung der Hamilton-Multiplikation, die auf ganz definiert ist. Die Hamilton-Multiplikation der Basiselemente untereinander oder etwas umfassender innerhalb der Menge
geschieht nach den Hamilton-Regeln
.
Diese Regeln zusammen mit der Vertauschbarkeit von mit jedem anderen Element geben eine vollständige Tafel für eine Verknüpfung vor, die sich als assoziativ erweist und zu einer Gruppe macht – der Quaternionengruppe.
Unter Voraussetzung der Regel (und der Gruppenaxiome) ist die Kombination aus und , in der das zyklische und antizyklische Verhalten der drei nicht-reellen Quaternionen-Einheiten zum Ausdruck kommt, ersetzbar durch die Einzelregel
.
Diese Einzelregel könnte auch durch jede der fünf alternativen Einzelregeln , ,
, oder ersetzt werden.
Mithilfe dieser Ersetzungsregeln, des Assoziativgesetzes und (linken sowie rechten) Distributivgesetzes lässt sich die Multiplikation auf ganz fortsetzen. Die kann man wie anti-kommutierende Variablen behandeln. Treten Produkte von zweien von ihnen auf, so darf man sie nach den Hamilton-Regeln ersetzen.
Die ausgearbeiteten Formeln für die zwei Verknüpfungen von zwei Quaternionen
Damit sind die für einen Ring erforderlichen zwei Verknüpfungen definiert. Es ist leicht nachgerechnet, dass alle Ring-Axiome erfüllt sind.
Das additive Inverse ist (wie in jedem Vektorraum) das Produkt mit dem Skalar −1. Die Subtraktion ist die Addition dieses Inversen.
Die für einen Schiefkörper erforderliche Division muss wegen der fehlenden Kommutativität durch eine Multiplikation mit dem (multiplikativen) Inversen ersetzt werden (siehe Inverses und Division).[9]
Ist ein Ring, dann wird der mit der Multiplikation
ausgestattete Ring als Gegenring bezeichnet. Hier folgen alle Ringgesetze, das heißt das Assoziativgesetz sowie beide Distributivgesetze, aus den ursprünglichen Gesetzen. Im Gegenring , der wegen der Nicht-Kommutativität von von diesem verschieden ist, gelten alle im Abschnitt Grundrechenarten angeführten Rechenregeln bis auf die Multiplikation, bei der die Vorzeichen der Terme, die nur Koeffizienten mit und haben, invertiert sind. Ferner gilt die Kurzform
.
Im Übrigen hat Gauß laut Lam:Eq. (1.4) die Quaternionenmultiplikation im Jahr 1819 genau so definiert.
Die Nichtkommutativität ist gleichbedeutend mit der Verschiedenheit von und . Da beide Ringe die Ringaxiome der Quaternionen erfüllen, muss dieses Axiomensystem „unvollständig“ sein im Sinne Hölders. In diesem Sinn vollständig sind die Axiomensysteme der rationalen, reellen oder komplexen Zahlen.
Da hier der Imaginärteil mit seinen Einheitsvektoren verknüpft bleibt und der Realteil als reelle Zahl eindeutig in die Quaternionen einzubetten ist, ergeben sich die einfachen Beziehungen
Ist eine Quaternion gleich ihrer Konjugierten, so ist sie reell, d. h., der Vektorteil ist null. Ist eine Quaternion gleich dem Negativen ihrer Konjugierten, so ist sie eine reine Quaternion, d. h., der Skalarteil ist null.
Weitere wichtige Eigenschaften der Konjugation sind:
Ferner kann man damit die einzelnen Komponenten einer Quaternion isolieren:
.
Das aus der Physik weit verbreitete Vorgehen, das Skalarprodukt abkürzend wie eine Multiplikation mit dem Mittepunkt„“ zu notieren, wird auch bei den Quaternionen häufig angewandt, wobei hier die Verwechslungsgefahr zwischen Quaternionenmultiplikation und Skalarprodukt hoch ist.
Im Folgenden verwenden wir folgende Konvention:
Das Quaternionenprodukt wird stets ohne Benutzung des Mittepunkts durch Aneinanderreihung der Faktoren notiert.
Das Skalarprodukt, und zwar sowohl das 4- wie das 3-dimensionale, wird in Multiplikationsschreibweise mit dem Mittepunkt „“ notiert.
so lässt sich die Multiplikation mithilfe des (dreidimensionalen) Skalarprodukts und Kreuzprodukts beschreiben:
.
Zwei Quaternionen sind demnach genau dann miteinander vertauschbar, wenn ihr Kreuzprodukt 0 ist, wenn also ihre Vektorteile als reelle Vektoren linear abhängig sind (s. a. Einbettung der komplexen Zahlen).
Bei einer nicht-kommutativen Multiplikation muss man die Gleichungen
und
unterscheiden. Wenn das Inverse existiert, dann sind
bzw.
respektive Lösungen, die nur dann übereinstimmen, wenn und kommutieren, insbesondere wenn der Divisor reell ist. In solch einem Fall kann die Schreibweise verwendet werden – bei allgemeinen Divisionen wäre sie nicht eindeutig.
Wenn zusätzlich existiert, gilt die Formel
,
denn
und .
Für
ist die Norm
reell und positiv. Die Quaternion
erfüllt dann die Bedingungen des Rechts-
und des Links-Inversen
und kann deshalb als das Inverse schlechthin von bezeichnet werden.
Eine Quaternion, deren Vektorteil 0 ist, wird mit der ihrem Skalarteil entsprechenden reellen Zahl identifiziert.
Eine Quaternion, deren Realteil 0 ist (äquivalent, deren Quadrat reell und nichtpositiv ist), nennt man rein, rein imaginär oder vektoriell. Die Menge der reinen Quaternionen wird als oder notiert. Sie ist ein dreidimensionaler reeller Vektorraum mit Basis . Für reine Quaternionen nimmt die Multiplikation eine besonders einfache Form an:
Eine Einheitsquaternion (auch normierte Quaternion, Quaternion der Länge 1) ist eine Quaternion, deren Betrag gleich 1 ist. Für sie gilt (analog zu den komplexen Zahlen)
.
Für eine beliebige Quaternion ist
eine Einheitsquaternion, die man manchmal auch als das Signum oder den Versor von bezeichnet.
Das Produkt zweier Einheitsquaternionen und die Inverse einer Einheitsquaternion sind wieder Einheitsquaternionen. Die Einheitsquaternionen bilden also eine Gruppe.
Jede Quaternion mit Quadrat definiert einen Einbettungsisomorphismus der komplexen Zahlen in die Quaternionen
mit und als imaginärer Einheit der komplexen Zahlen. Dabei sind die Bildmengen der und entsprechenden Einbettungen identisch: .
Eine jede solche Quaternion darf genannt werden, eine senkrechte dazu und ihr Produkt .[14]:Seite 40.[15]
Jede nicht-reelle Quaternion liegt in genau einer solchen Einbettung von . Zwei Quaternionen sind genau dann vertauschbar, wenn es eine gemeinsame Einbettung gibt.
Zwei verschiedene Bilder haben die reelle Achse zum Durchschnitt.
So betrachtet, sind die Quaternionen eine Vereinigung komplexer Ebenen.
mit der reinen Quaternion. Will man also eine reine Quaternion exponentiieren, so ist ihr Betrag und die reine Einheitsquaternion zu bilden, und es ergibt sich die Einheitsquaternion
Da als eine Vereinigung von Einbettungen komplexer Ebenen aufgefasst werden kann (s. Abschnitt #Einbettung der komplexen Zahlen), kann man versuchen, Funktionen [20] mithilfe der genannten Einbettungsisomorphismen vom Komplexen ins Quaternionische zu liften. Dabei ist zu fordern, dass die so gewonnenen Funktionen mit bei Überschneidungen der Definitionsbereiche dasselbe Ergebnis liefern, so dass die vereinigte Funktion auf der Vereinigungsmenge vermöge als in wohldefinierter Weise gebildet werden kann.
Sei eine komplexwertige Funktion einer komplexen Variablen mit reellen und reellen Einbettbarkeit: ist genau dann einbettbar in die Quaternionen, wenn eine gerade und eine ungerade Funktion des jeweils zweiten Arguments ist.
Beweis
Ist eine beliebige nicht-reelle Quaternion, dann ist eine reine und normierte Quaternion mit . Seien ferner und , die beide reell sind. Sowohl wie ist ein Einbettungsisomorphismus für das Bild . Im ersteren Fall ist das Urbild von , im zweiten Fall haben wir wegen das Urbild ; jeweils mit als der imaginären Einheit von . Die Urbilder sind verschieden, das Bild, das bei der zu bildenden Funktion als Argument fungieren soll, ist aber beidesmal .
Das „Liften“ wird durch die Einbettung der Funktionswerte als
und
vervollständigt (s. Diagramm). Nun ist nach Voraussetzung
so dass sich
ergibt und nicht von der Wahl des Einbettungsisomorphismus abhängt.
Die Bedingung ist auch notwendig. Denn lässt umgekehrt die Funktion eine Einbettung in die Quaternionen zu, so gibt es zu jedem eine geeignete reine Einheitsquaternion und reelle mit und
Bei der konjugierten Quaternion hat die Einbettung dasselbe Bild wie und also dieselbe Definitionsmenge wie .
Der Funktionswert
muss also mit dem vorigen für alle übereinstimmen. ■
Die eingebettete Funktion stimmt auf allen Teilmengen mit überein, kann also als Fortsetzung von angesehen werden und, wenn Verwechslungen nicht zu befürchten sind, wird auch der Funktionsname beibehalten.
Ist eine einbettbare Funktion, so ist wegen der Ungeradheit von in der zweiten Variablen, also und für . Somit folgt aus der Einbettbarkeit, dass die Einschränkung aufs Reelle reell ist.[21] Zu dieser Klasse von komplexen Funktionen gehören Norm und Betrag, aber auch alle Laurent-Reihen mit reellen Koeffizienten , so die Exponential- und Logarithmusfunktion.[22]
Schwieriger ist es, eine allgemeine quaternionische Analysis mit Differential- und/oder Integralrechnung aufzustellen.
Ein Problem springt unmittelbar ins Auge: der Begriff des Differenzenquotienten, der in der reellen wie der komplexen Analysis so erfolgreich ist, muss wegen der Nicht-Kommutativität als linke und rechte Version definiert werden. Legt man dann genauso strenge Maßstäbe wie bei der komplexen Differenzierbarkeit an, dann stellt sich heraus, dass bestenfalls lineare Funktionen, und zwar links und rechts, differenzierbar sind.[23] Immer definieren lässt sich aber eine Richtungsableitung und das Gâteaux-Differential.
Im Folgenden werden Vektoren im dreidimensionalen Raum mit reinen Quaternionen , also die üblichen -Koordinaten mit den -Komponenten identifiziert. Definiert man den Nabla-Operator (wie Hamilton) als
und wendet ihn auf eine skalare Funktion als (formale) Skalarmultiplikation an, erhält man den Gradienten
Einheitsquaternionen können für eine elegante Beschreibung von Drehungen im dreidimensionalen Raum verwendet werden: Für eine feste Einheitsquaternion ist die Abbildung
bzw.
auf eine Drehung. (Hier, wie im Folgenden, ist nur von Drehungen die Rede, die den Ursprung festlassen, d. h., deren Drehachse durch den Ursprung verläuft.)
Die Polardarstellung stellt die Einheitsquaternion durch einen Winkel und eine reine Einheitsquaternion eindeutig dar als
.
Dann ist eine Drehung des um die Achse mit Drehwinkel .
Für jede Einheitsquaternion definieren und dieselbe Drehung; insbesondere entsprechen und beide der identischen Abbildung (Drehung mit Drehwinkel 0). Im Unterschied zur Beschreibung von Drehungen durch orthogonale Matrizen handelt es sich also um keine 1:1-Entsprechung, zu jeder Drehung gibt es genau zwei Einheitsquaternionen mit .
Die Hintereinanderausführung von Drehungen entspricht der Multiplikation der Quaternionen, d. h.
Die Umkehrung der Drehrichtung entspricht dem Inversen:
Damit ist die Abbildung
ein Homomorphismus der Gruppe der Einheitsquaternionen in die Drehgruppe. Sie ist eine Überlagerung der , und da ein Bildelement genau die zwei Urbilder hat, zweiblättrig, weshalb der Homomorphismus auch 2:1-Überlagerung(shomomorphismus)[14]:Seite 33. genannt wird. Ferner ist sie universell, da einfach zusammenhängend ist.
die Drehung , denn es ist für jede reine Quaternion .
Wenn man die homogen formulierte Version von als Eingabematrix nimmt, produziert die gezeigte Lösung mit die Quaternion . Wegen kann die Homogenität in den durch die Setzung aufrechterhalten werden.
Die hat wie die über die Dimension 3. Die neun Komponenten von können also nicht alle frei wählbar sein. Da einer jeden Matrix eine Quaternion entspricht, decken die Drehmatrizen die ganze ab. Bei ist . Falls also wirklich , ist auch die Einheitsquaternion zu .
Für Eulerwinkel gibt es verschiedene Konventionen; die folgende Darlegung bezieht sich auf die Drehung, die man erhält, wenn man zuerst um die -Achse um den Winkel , dann um die neue -Achse um den Winkel und schließlich um die neue -Achse um den Winkel dreht, d. i. die sog. „x-Konvention“ (z, x’, z’’) mit allen Winkeln doppelt. Die Einzeldrehungen entsprechen den Einheitsquaternionen
und da jeweils um die mitgedrehten Achsen gedreht wird, ist die Reihenfolge der Komposition umgekehrt. Die Gesamtdrehung entspricht also
Für andere Konventionen ergeben sich ähnliche Formeln.
Die Eulerwinkel zu einer gegebenen Quaternion lassen sich an der zugehörigen Drehmatrix ablesen.
Universelle Überlagerung der Drehgruppe; Spingruppe
Die aus der Quantenmechanik bekannten sog. Pauli-Matrizen stehen in einfacher Beziehung zu den drei Erzeugenden der . Das wird besonders deutlich in der Darstellung als komplexe Matrizen:
,
dabei ist die imaginäre Einheit der komplexen Zahlen.
Die Pauli-Matrizen haben −1 zur Determinante (sind also keine Quaternionen), sind spurfrei und hermitesch und kommen daher in der Quantenmechanik als messbare Größen in Frage, was sich für die Anwendungen (s. mathematische Struktur der Quantenmechanik) als wichtig erwiesen hat. Einzelheiten sind im Artikel SU(2) dargestellt.
Orthogonale Abbildungen des vierdimensionalen Raumes
Die Erzeugenden der zyklischen Gruppen sind Einbettungen von Einheitswurzeln.[28] Die Urbilder der , , , unter werden mit , , , bezeichnet und heißen binäre Diedergruppe etc. Für eine Polyedergruppe ist also .[29]
Die endlichen Gruppen von Quaternionen sind demnach[14]: 3.5 The Finite Groups of Quaternions, S. 33 :
Die zyklischen Gruppen sind in naheliegender Weise Untergruppen von anderen Gruppen. Die Quaternionengruppe = ist eine Untergruppe der binären Tetraedergruppe .
Die Automorphismengruppe von ist isomorph zur Oktaedergruppe (Symmetrische Gruppe). Ihre Elemente sind ebenfalls Automorphismen von , , und .
Die konvexen Hüllen sind (bis auf die Fälle , bei denen man mit 2 Dimensionen auskommt) 4-Polytope und haben, da alle Gruppenelemente von der Länge 1 sind, die Einheits-3-Sphäre als Um-3-Sphäre. Die Ränder dieser 4-Polytope, also die Zellen, sind Ansammlungen von Tetraedern – bis auf den Fall , bei dem es Oktaeder sind. Bei den regulären unter den konvexen Hüllen ist es klar, dass die Zellen ebenfalls regulär und zueinander kongruent sind und es eine In-3-Sphäre gibt, die alle Zellen (an ihrem Mittelpunkt) berührt. Die übrigen, nämlich und , spannen sog. perfekte[30] 4-Polytope auf. Hier sind die Zellen tetragonale Disphenoide, welche ebenfalls alle zueinander kongruent sind und an ihrem Mittelpunkt von der In-3-Sphäre berührt werden.
Eine elegante, aber zugleich abstrakte Konstruktion stellt der Weg über den Quotienten des nichtkommutativen Polynomrings in drei Unbestimmten dar, deren Bilder sind, modulo dem Ideal, das von den Hamilton-Regeln erzeugt wird. Alternativ kommt man auch mit nur zwei Unbestimmten aus.
Auf diese Weise ergibt sich die Quaternionen-Algebra als Clifford-Algebra der zweidimensionalen, euklidischen Ebene mit Erzeugern . Im Zusammenhang mit dreidimensionalen Drehungen ist auch die Interpretation als der gerade Anteil der Clifford-Algebra des dreidimensionalen, euklidischen Raumes wichtig. Die Erzeuger werden dann mit identifiziert.
Beim Basiswechsel von zum algebraischen Abschluss werden die Quaternionen zu einer Matrizenalgebra:
Die komplexe Konjugation auf dem Faktor des Tensorproduktes entspricht einer Involution der Matrizenalgebra. Die Invarianten von , d. s. die von fix gelassenen Elemente mit , bilden eine zu isomorphe Algebra. Zur oben angegebenen Matrixdarstellung der Quaternionen als komplexe Matrizen passt die Involution
mit .
Die Tatsache, dass die Brauergruppe von nur aus zwei Elementen besteht, spiegelt sich auch darin wider, dass
Bei allen obigen Arten der Konstruktion spielt die Vollständigkeit des Koeffizientenvorrats keine Rolle. Deshalb kann man (anstatt von den reellen Zahlen über zu ) auch von anderen Grundkörpern, z. B. den rationalen Zahlen, ausgehen, um via gaußscher Zahlen bei den Quaternionen mit rationalen Koeffizienten
anzukommen mit formal denselben Rechenregeln. Danach kann, falls überhaupt erforderlich, die Vervollständigung für die Betragsmetrik durchgeführt werden mit einem Endergebnis isomorph zu .
Insofern können bei vielen Aussagen durch , durch und durch ersetzt werden.
Auch Körper eignen sich als Ausgangspunkt zur Bildung nicht-kommutativer Erweiterungskörper nach Art der Quaternionen. Wichtig ist, dass in die Summe aus vier Quadraten nur für verschwindet. Dann gibt es auch kein mit und ist eine echte quadratische Erweiterung, die eine Konjugation definiert. Diese Bedingungen sind z. B. bei allen formal reellen Körpern erfüllt.
Aber auch bei Körpern, die nicht angeordnet werden können, kann die obige Bedingung betreffend die Summe aus vier Quadraten erfüllt sein, bspw. im Körper der 2-adischen Zahlen. Der so über gebildete Quaternionenkörper ist isomorph zur Vervollständigung des (oben beschriebenen) Körpers der Quaternionen mit rationalen Koeffizienten für die folgende (nichtarchimedische diskrete) Bewertung , dem 2-Exponenten der Norm,
Die Identität, die aus dem Produkt zweier Summen von vier Quadraten
wieder eine Summe von vier Quadraten macht, gilt universell – einschließlich aller Varianten, die durch Vorzeichenspiel und Permutation entstehen – in jedem Polynomring über einem kommutativen unitären Ring und kann im Nachhinein als „Abfallprodukt“ der Multiplikativität des quaternionischen Betrags angesehen werden. Ihre Entdeckung 1748, also lange vor der Quaternionenzeit, geht jedoch auf Leonhard Euler zurück, der mit ihrer Hilfe den 1770 erstmals erbrachten Beweis von Joseph-Louis Lagrange für den lange vermuteten Vier-Quadrate-Satz wesentlich vereinfachen konnte. (Anmerkung: Die algebraisch beweisbaren bilinearen 2-, 4- und 8-Quadrate-Identitäten sind die Grundlagen der Kompositionsalgebren, nämlich der komplexen Zahlen, der Quaternionen, und der Oktonionen. Diese letzteren sind sozusagen die „Quadratwurzeln“ aus den ersteren. Alles, was somit korrekt mit Quaternionen berechnet wird, steht bocksteif auf elementaren algebraischen Identitäten. Wie Adolf Hurwitz 1898 bewies,[40] gibt es außer den erwähnten 2-, 4- und 8-Quadrate-Identitäten keine weiteren bilinearen n-Quadrate-Identitäten mehr.)
Die Darstellung von Drehungen mithilfe von Quaternionen wird im Bereich der interaktiven Computergrafik genutzt, insbesondere bei Computerspielen, sowie bei der Steuerung von Satelliten. Bei Verwendung von Quaternionen an Stelle von Drehmatrizen werden etwas weniger Rechenoperationen benötigt. Insbesondere wenn viele Drehungen miteinander kombiniert (multipliziert) werden, steigt die Verarbeitungsgeschwindigkeit.
Des Weiteren werden Quaternionen, neben den Eulerwinkeln, zur Programmierung von Industrierobotern (z. B. ABB) genutzt.
William Rowan Hamilton hatte 1835 die Konstruktion der komplexen Zahlen als Zahlenpaare angegeben. Dadurch motiviert, suchte er lange nach einer entsprechenden Struktur auf dem Raum der Zahlentripel; heute weiß man, dass keine derartige Struktur existiert. 1843 schließlich gelangte er zu der Erkenntnis, dass es möglich ist, eine Multiplikation auf der Menge der 4-Tupel zu konstruieren, wenn man dazu bereit ist, die Kommutativität aufzugeben. In einem Brief an seinen Sohn gibt er als Datum den 16. Oktober 1843 an und berichtet, er habe sich spontan dazu hinreißen lassen, die Multiplikationsregeln in einen Stein an der Brougham Bridge (heute Broombridge Road) in Dublin zu ritzen; später wurde dort eine Gedenktafel angebracht.
Die Rechenregeln für Quaternionen waren in Ansätzen schon früher bekannt, so findet sich die Formel für den Vier-Quadrate-Satz bereits bei Leonhard Euler (1748). Andere, auch allgemeinere Multiplikationsregeln wurden von Hermann Graßmann untersucht (1855).
Schon kurz nach der Entdeckung der Quaternionen fand Hamilton die Darstellung von Drehungen des Raumes mithilfe von Quaternionen und damit eine erste Bestätigung der Bedeutung der neuen Struktur; Arthur Cayley entdeckte 1855 die entsprechenden Aussagen über orthogonale Abbildungen des vierdimensionalen Raumes. Die bloße Parametrisierung der -Drehmatrizen war hingegen schon Euler bekannt. Cayley gab 1858 in der Arbeit, in der er Matrizen einführte, auch die Möglichkeit der Darstellung von Quaternionen durch komplexe -Matrizen an.
Hamilton widmete sich fortan ausschließlich dem Studium der Quaternionen; sie wurden in Dublin ein eigenes Examensfach. In seiner Nachfolge wurde 1895 sogar ein „Weltbund zur Förderung der Quaternionen“ gegründet. Der deutsche Mathematiker Felix Klein schreibt rückblickend über diese anfängliche Euphorie:
„Wie ich schon andeutete, schloß sich Hamilton eine Schule an, die ihren Meister an Starrheit und Intoleranz noch überbot. […] Die Quaternionen sind gut und brauchbar an ihrem Platze; sie reichen aber in ihrer Bedeutung an die gewöhnlichen komplexen Zahlen nicht heran. […] Die Leichtigkeit und Eleganz, mit der sich hier die weittragendsten Theoreme ergeben, ist in der Tat überraschend, und es läßt sich wohl von hier aus die alles andere ablehnende Begeisterung der Quaternionisten für ihr System begreifen, die […] nun bald über vernünftige Grenzen hinauswuchs, in einer weder der Mathematik als Ganzem noch der Quaternionentheorie selbst förderlichen Weise. […] Die Verfolgung des angegebenen Weges – der neu sein will, obwohl er tatsächlich nur eine peinlich genaue Übertragung längst bekannter Gedanken auf ein einziges neues Objekt, also durchaus keine geniale Konzeption bedeutet – führt zu allerhand Erweiterungen der bekannten Sätze, die in ihrer Allgemeinheit das Hauptcharakteristikum verlieren und gegenstandslos werden, allenfalls zu Besonderheiten, die ein gewisses Vergnügen gewähren mögen.“
– Felix Klein: Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert[41]
Ähnliche Konstruktionen wie die Quaternionen werden manchmal unter dem Begriff „hyperkomplexe Zahlen“ zusammengefasst. Beispielsweise sind die Cayley-Zahlen oder Oktaven ein achtdimensionales Analogon zu den Quaternionen; ihre Multiplikation ist allerdings weder kommutativ noch assoziativ.
↑Bei Gauß findet sich eine Notiz über die Multiplikation und Konjugation von Quadrupeln im Kapitel Mutation des Raumes. In: Carl Friedrich Gauß: Werke. Achter Band. König. Gesell. Wissen., Göttingen 1900, S. 357–361, die auf das Jahr 1819 datiert wird. Die Unterschiede zu Hamilton gehen nicht über notationelle Konventionen hinaus. (Zitiert nach Lam S. 25).
↑Karsten Kunze, Helmut Schaeben: The Bingham Distribution of Quaternions und Its Spherical Radon Transform in Texture Analysis. In: Mathematical Geology. 8. Jahrgang, November 2004, S.917–943, doi:10.1023/B:MATG.0000048799.56445.59.
↑die wegen der fehlenden Kommutativität in der Multiplikation nicht automatisch auf eines reduziert werden können.
↑NB: wird bei Bedarf genauso als Spaltenvektor eingesetzt.
↑Brian L. Stevens, Frank L. Lewis, Eric N. Johnson: Aircraft control and simulation : dynamics, controls design, and autonomous systems. Third edition Auflage. John Wiley & Sons, Inc., Hoboken, New Jersey 2016, ISBN 978-1-118-87098-3, S.46.
↑Reelle Faktoren kommutieren mit und damit mit allen Quaternionen, d. h., es gilt beispielsweise
,
aber
.
Nicht alle aus der elementaren Algebra bekannten Rechenregeln gelten für die Quaternionen, z. B. gilt
.
Die binomischen Formeln oder sind hier also nicht anwendbar. Sie setzen voraus, dass gilt.
↑Viele Autoren setzen jedoch Norm dem Betrag gleich.
↑Den unendlich vielen Nullstellen des Polynoms steht das Fehlen einer Nullstelle beim Polynom vom Grad 1 gegenüber. Letzteres besitzt 2 Monome vom Grad 1, dem höchsten Grad seiner Monome. In nicht-kommutativen Ringen wird der Grad des Monoms mit zu definiert, und ein Monom dominiert ein Polynom, wenn es unter allen Monomen den höchsten Grad hat. Dann ist der Grad des Polynoms auch gleich dem Grad der dominierenden Monome. Hat ein Polynom über ein einziges dominierendes Monom von einem Grad > 0, dann hat es immer eine Nullstelle in . (Eilenberg-Niven).
↑Tsit Yuen Lam (Berkeley): Hamilton’s Quaternions (PostScript, englisch). Abgerufen am 30. August 2009, Seite 22. Der Polarwinkel ist das Analogon zum komplexen Argument, allerdings ist bei dessen Hauptwert das Signum des Imaginärteils mit hinein genommen, was sich bei den Quaternionen nicht machen lässt, so dass nicht eine einfache Einschränkung des Polarwinkels ist.
↑Die Überlegungen gelten schon, wenn der Definitionsbereich von ein Gebiet ist.
↑Letzteres ist aber nicht hinreichend, denn die Funktion ist trotz wegen nicht einbettbar. Sind jedoch bei solchen Funktionen die Cauchy-Riemannschen Differentialgleichungen erfüllt, so folgt aus der Ungeradheit von die Geradheit von (jeweils in der zweiten Variablen) und damit die Einbettbarkeit in die Quaternionen. Im Gegensatz zu ist die Funktion einbettbar mit der Fortsetzung
↑Ein weiteres nicht einbettbares Beispiel ist , bei dem nicht ungerade ist in . Die Einbettung mithilfe des Einbettungsisomorphismus ergibt zwar die (konstante) Funktion , die aber mit anderen Einbettungen, z. B. mit dem (ebenfalls konstanten) Ergebnis nicht zusammenpasst.
↑Wie im referenzierten Abschnitt und im Abschnitt #Automorphismen bemerkt, gibt es zu jedem fixen Dreibein sehr viele verschiedene Einbettungen dieser endlichen Untergruppen in .
↑Diese Gruppen firmieren – besonders in der englischen Literatur – auch als binäre Erweiterung der Polyedergruppe , und die binären Diedergruppen zusätzlich als verallgemeinerte Quaternionengruppen, auch als dizyklische Gruppen, in Zeichen .
↑ abcGabor Gévay: On Perfect 4-Polytopes (PDF; 211 kB) Contributions to Algebra and Geometry Volume 43 (2002), No. 1, 243–259: gibt auf S. 256 die 4-Polytope »« für die bzw. auf S. 252 Table 2 das 4-Polytop »« für .
↑Satz von Pontrjagin (1931) in Pontrjagin: Jeder lokalkompakte, zusammenhängende topologische Schiefkörper ist entweder der Körper der reellen Zahlen oder der Körper der komplexen Zahlen oder der Schiefkörper der Quaternionen.