Brauergruppe

Begriff aus der Klassenkörpertheorie

Die Brauergruppe wurde in der Mathematik eingeführt, um assoziative Divisionsalgebren über einem gegebenen Körper zu klassifizieren, die das Zentrum haben. Es handelt sich dabei um eine abelsche Gruppe, deren Elemente Äquivalenzklassen bestimmter Algebren sind. In der Literatur wird sie deshalb auch brauersche Algebrenklassengruppe genannt. Benannt ist sie nach dem Algebraiker Richard Brauer.

Konstruktion

Bearbeiten

Eine zentrale einfache Algebra über einem Körper   ist eine endlichdimensionale assoziative  -Algebra  , die ein einfacher Ring ist (also ein Ring, dessen einzige beidseitigen Ideale die trivialen sind) und deren Zentrum gerade   ist. So sind beispielsweise die komplexen Zahlen   eine zentrale einfache Algebra über sich selbst, nicht jedoch über den reellen Zahlen  , da ihr Zentrum ganz   und somit größer als   ist. Nach einem Satz von Frobenius sind die endlichdimensionalen assoziativen Divisionsalgebren mit Zentrum   gerade die reellen Zahlen und die Quaternionen.

Sind   und   zwei zentrale einfache Algebren, so kann man ihr Tensorprodukt   als  -Algebra bilden. Man kann zeigen, dass das Tensorprodukt selbst wieder eine zentrale einfache Algebra ist.

Mit dem Tensorprodukt als Verknüpfung bilden die zentralen einfachen Algebren also einen Monoid. Um hieraus eine Gruppe zu erhalten, wendet man den Satz von Artin-Wedderburn an, der es erlaubt, jede zentrale einfache Algebra als Matrizenring   über einer assoziativen Divisionsalgebra   zu schreiben. Unterscheidet man nun nur nach der Divisionsalgebra  , nicht jedoch nach den Werten von  , so wird aus dem Ring eine Gruppe. Formal bedeutet dies, dass wir eine Äquivalenzrelation definieren und   mit   für alle natürlichen Zahlen   und   miteinander identifizieren. Das neutrale Element ist die Äquivalenzklasse von  , das inverse Element der Äquivalenzklasse der Algebra   ist die Äquivalenzklasse der Gegenalgebra   die sich von   nur darin unterscheidet, dass die Multiplikation umgekehrt wird. Es gilt nämlich für eine zentrale einfache Algebra   die Gleichung  , wobei   der Grad von   über   ist.

Die entstehende Gruppe wird Brauergruppe des Körpers   genannt und mit   bezeichnet.

Beispiele

Bearbeiten

Die Brauergruppe eines algebraisch abgeschlossenen Körpers ist die triviale Gruppe mit nur dem neutralen Element, ebenso die Brauergruppe eines endlichen Körpers.

Die Brauergruppe   der reellen Zahlen ist zyklisch der Ordnung 2, da es wie bereits oben erwähnt bis auf Isomorphie nur zwei verschiedene assoziative Divisionsalgebren über   gibt, die als Zentrum   haben:   selbst und die Quaternionen  . Insbesondere gilt   und  , dabei ist letzteres der Ring der reellen 4×4-Matrizen.

Aus dem Satz von Tsen (nach Chiungtze Tsen 1933) folgt, dass die Brauergruppe eines Funktionenkörpers in einer Variablen über einem algebraisch abgeschlossenen Körper ebenfalls trivial ist.

Anwendungen

Bearbeiten

In der weiteren Theorie bestimmt man die Brauergruppe lokaler Körper, für jeden nichtarchimedischen lokalen Körper ist sie kanonisch isomorph zu  . Die erhaltenen Resultate lassen sich auf globale Körper anwenden. Dies liefert einen Zugang zur Klassenkörpertheorie, der es erstmals erlaubte globale Klassenkörpertheorie aus der lokalen abzuleiten; historisch lief die Entwicklung umgekehrt. Anwendung findet die Brauergruppe auch bei diophantischen Gleichungen.

Der Übergang vom lokalen zum globalen Körper ergibt sich wie folgt, die Brauergruppe   eines globalen Körpers   wird durch die exakte Sequenz

 

gegeben, wobei die direkte Summe über alle (archimedischen und nichtarchimedischen) Vervollständigungen von   gebildet wird und die Abbildung nach   durch Addition gegeben ist, dabei fassen wir die Brauergruppe der reellen Zahlen als   auf. Die Gruppe   auf der rechten Seite ist die Brauergruppe der Klassenformation der Idel-Klasse assoziiert zu  .

Man kann die Brauergruppe auch mit Hilfe von Galoiskohomologie darstellen, es gilt  . Dabei ist   der separable Abschluss des nicht notwendig perfekten Körpers  . Falls   perfekt ist, stimmt dieser mit dem algebraischen Abschluss überein, ansonsten muss die Galoisgruppe über   definiert werden um Sinn zu ergeben.

Eine Verallgemeinerung mittels der Theorie der Azumaya-Algebren wurde in der algebraischen Geometrie von Grothendieck eingeführt.

Literatur

Bearbeiten
  • Jürgen Neukirch: Klassenkörpertheorie (= B.I.-Hochschulskripten 713/713a, ISSN 0521-9582). Verbesserte Neuauflage. Bibliographisches Institut, Mannheim u. a. 1969.
  • Helmut Hasse: Zur Struktur der R. Brauerschen Algebrenklassengruppe über einem algebraischen Zahlkörper – Insbesondere Begründung der Theorie des Normrestsymbols und Herleitung des Reziprozitätsgesetzes mit nichtkommutativen Hilfsmitteln – Emmy Noether zum 50. Geburtstag am 23. März 1932. Siehe Mathematische Annalen, Band 107 (1933), Berlin, Seite 731, Abruf am 9. Juni 2021.
Bearbeiten