Diagonalensatz
Der Diagonalensatz ist ein Lehrsatz der Elementargeometrie, mit dem eine charakteristische Bedingung formuliert wird, unter der ein Viereck der euklidischen Ebene ein Parallelogramm ist.
Formulierung des Satzes
BearbeitenDer Satz besagt folgendes:[1]
- Gegeben sei ein Viereck der euklidischen Ebene.
- Dann gilt:
- ist jedenfalls dann ein Parallelogramm, wenn die beiden Diagonalen und sich gegenseitig halbieren in der Weise, dass die Mittelpunkte der beiden Diagonalen übereinstimmen.
Herleitung mittels Vektorrechnung
BearbeitenDie Bedingung besagt, dass es in der euklidischen Ebene einen Punkt gibt dergestalt, dass die beiden Vektorgleichungen und bestehen.
Daraus folgert man:
- .
Genauso ergibt sich:
- .
Dies beweist den Satz.
Verallgemeinerung auf Koordinatenebenen
BearbeitenDer Diagonalensatz lässt sich auf affine Koordinatenebenen über kommutativen Körpern einer Charakteristik ausdehnen und verschärfen; und zwar wie folgt:[2]
- Gegeben seien vier paarweise verschiedene nichtkollineare Punkte .
- Dann sind die folgenden beiden Bedingungen gleichwertig:
- (A1) Die vier Punkte bilden ein Parallelogramm; d. h.:
- Es sind und .[3]
- (A2) Die beiden Diagonalen und schneiden sich im Mittelpunkt der beiden Diagonalen; d. h.:
- Es gilt .
- (A1) Die vier Punkte bilden ein Parallelogramm; d. h.:
Anmerkung zu Koordinatenebenen über Körpern der Charakteristik 2
BearbeitenFür einen kommutativen Körper der Charakteristik ist der Sachverhalt anders. Bilden in diesem Falle vier Punkte ein Parallelogramm, so sind die Diagonalen parallel.[4]
Siehe auch
BearbeitenLiteratur
Bearbeiten- Max Koecher, Aloys Krieg: Ebene Geometrie (= Springer-Lehrbuch). 2., neu bearbeitete und erweiterte Auflage. Springer Verlag, Berlin (u. a.) 2000, ISBN 3-540-67643-0.
- Harald Scheid (Hrsg.): DUDEN: Rechnen und Mathematik. 4., völlig neu bearbeitete Auflage. Bibliographisches Institut, Mannheim - Wien - Zürich 1985, ISBN 3-411-02423-2.
Einzelnachweise und Fußnoten
Bearbeiten- ↑ DUDEN: Rechnen und Mathematik. 1985, S. 652
- ↑ Koecher-Krieg: Ebene Geometrie. 2000, S. 59
- ↑ Für zwei Punkte ist die Verbindungsgerade.
- ↑ Koecher-Krieg: Ebene Geometrie. 2000, S. 60