Satz von Varignon

mathematischer Satz

Der Satz von Varignon (auch Satz vom Mittenviereck) beschreibt in der Geometrie eine Eigenschaft von Vierecken. Namensgeber ist Pierre de Varignon (1654–1722).

Formulierung

Bearbeiten
 
Viereck mit konstruiertem Parallelogramm

Wenn man die Mitten benachbarter Seiten eines Vierecks verbindet, dann erhält man ein Parallelogramm.

Voraussetzung

Bearbeiten

 

Behauptung

Bearbeiten

Das Viereck EFGH ist ein Parallelogramm.

Gang des Beweises

Bearbeiten
  1. Betrachte das Dreieck ABC. Nimmt man B als Streckzentrum einer zentrischen Streckung, werden A auf E und C auf F mit Streckfaktor ½ abgebildet. Nach den Abbildungseigenschaften der zentrischen Streckung – Bildgerade und Urgerade sind parallel – folgt AC ∥ EF.
  2. Ebenso zeigt man, dass AC ∥ GH, BD ∥ FG, und BD ∥ HE.
  3. Die Parallelität ist transitiv. Also ist EF ∥ HG und FG ∥ HE.

Die gegenüberliegenden Seiten des Vierecks EFGH sind parallel, was der Definition eines Parallelogramms entspricht.

Folgerungen

Bearbeiten

Umfang des Varignon-Parallelogramms

Bearbeiten

Der Umfang des Varignon-Parallelogramms ist genau so groß wie die Summe der Diagonalenlängen im Ursprungsviereck.

Fläche des Varignon-Parallelogramms

Bearbeiten

Die Fläche des Varignon-Parallelogramms ist halb so groß wie die Fläche des Ursprungsvierecks.

Siehe auch

Bearbeiten

Literatur

Bearbeiten
Bearbeiten