Zum Archiv
Wie wird ein Archiv angelegt?
Auf dieser Seite werden Abschnitte ab Überschriftenebene 2 automatisch archiviert, die seit 7 Tagen mit dem Baustein {{Erledigt|1=--~~~~}} versehen sind.
Die Löschung der Seite „Buffonsches Nadelproblem“ wurde ab dem 12. Mai 2009 diskutiert. In der Folge wurde der Löschantrag entfernt, und aus dem Artikel wurde anschließend eine Weiterleitung erstellt. Bitte vor einem erneuten Löschantrag die damalige Diskussion beachten.

Welche Verteilung hat der Schätzer ?

Bearbeiten

Der Schäzer des Erwartungswertes von Z wird eine Normalverteilung haben: , was ist dann die Verteilung von  ? --biggerj1 (Diskussion) 09:43, 14. Okt. 2023 (CEST)Beantworten

Die Verteilung ist eine reziproke Normalverteilung, siehe en:Inverse distribution --biggerj1 (Diskussion) 13:19, 14. Okt. 2023 (CEST)Beantworten
Hmm allerdings scheint mir   (als skalierte Summe von Bernoulli-Verteilten Zufallszahlen) Binomial-verteilt zu sein und daher nur näherungsweise normalverteilt... biggerj1 (Diskussion) 13:42, 14. Okt. 2023 (CEST)Beantworten
Nein das stimmt nicht.   ist asymptotisch normalverteilt. Man muss grundsätzlich zwischen der Verteilung eines Schätzers für endlichen Stichprobenumfang   und der asymptotischen Verteilung eines Schätzers unterscheiden. Im Fall   mit stochastisch unabhängigen Bernoulli-Variablen   gilt  , aber die Folge der Verteilungen der Zufallsvariablen   hat keine (!) Grenzverteilung, da ihre Wahrscheinlichkeitsmasse für   nach   wandert. Eine Grenzverteilung hat nur die Folge der geeignet standardisierten Variablen,  . Zunächst ist es gegen die Intuition, aber auch   hat bei geeigneter Standardisierung eine asymptotische Normalverteilung! Der Hintergrund ist, dass nicht die Verteilungen von   und   gegen Grenzverteilungen konvergieren, diese gehen vielmehr gegen   und gegen Null, sondern geeignete Standardisierungen. Es ist Routine, die asymptotische Normalverteilung von   mit der Delta-Methode herzuleiten. Leider fehlt noch ein eigener WP-Artikel zur Deltamethode, wie auch sonst fast alles zur asymptotischen Statistik. Die asymptotische Normalverteilung von   steht mit Sicherheit irgendwo in der angegebenen Literatur.
Die Verteilung von   für endliches   hat ein Problem, da mit (kleiner und asymptotisch verschwindender) positiver Wahrscheinlichkeit durch Null dividiert wird. Jemand, dem es beim Nadelexperiment passieren würde, dass er Null Erfolge hat, würde es nicht zur Pi-Schätzung verwenden. Zur Berücksichtigung dieses Problems muss man an der Stelle Null gestutzte Verteilungen benutzen. Wenn   eine bei Null gestutzte Binomialverteilung hat, dann gibt es wahrscheinlich keinen Namen für die Verteilung von  . --Sigma^2 (Diskussion) 00:06, 16. Okt. 2023 (CEST)Beantworten
Hmm das muss ich mir mal mit https://en.wikibooks.org/wiki/Probability/Transformation_of_Probability_Densities#Derivation_using_the_Delta_Distribution durchrechnen. biggerj1 (Diskussion) 10:20, 16. Okt. 2023 (CEST)Beantworten
Der Artikel en:Delta method hilft eher weiter. Ein Zusammenhang zur Delta-Verteilung besteht nicht. Delta-Methode ist ein historisch bedingter Name, da die Delta-Methode ursprünglich aus der Fehlerrechnung kommt, wo man mit Deltas jonglierte und formulierte. Inzwischen ist es üblich, die Delta-Methode völlig Delta-frei zu formulieren. Der Artikel en:Delta method ist gut, der Artikel fr:Méthode delta auf das Wesentliche konzentriert. --Sigma^2 (Diskussion) 21:46, 23. Okt. 2023 (CEST)Beantworten
Es gibt jetzt einen Artikel Delta-Methode.--Sigma^2 (Diskussion) 12:01, 24. Okt. 2023 (CEST)Beantworten
Und jetzt die Herleitung der asymptotischen Verteilung von  :
Es gilt (zentraler Grenzwertsatz)
 ,
wobei   die Konvergenz in Verteilung bezeichnet. Für die Funktion   gilt   und damit  ,   und   jeweils an der Stelle  . Mit der Delta-Methode folgt
 
Eine Normalverteilungsapproximation der Verteilung von   für endliches, hinreichend großes   ist daher
 
Es würde mich wundern, wenn dies nicht schön längst in der Literatur zum Buffonschen Nadelproblem zu finden ist.
--Sigma^2 (Diskussion) 18:27, 24. Okt. 2023 (CEST)Beantworten
@Sigma^2: Hi Sigma^2, ich habe es nochmal mit der Delta-Transformation nachgerechnet:
Gegeben seien Bernoulli-verteilter Zufallszahl   (0<p<1). Der Mittelwertschätzer sei  , wobei die Verteilung nur asymptotisch für große Stichprobengrößen n erreicht wird. Weiter seien praktischer Weise die Realisierungen   für große Stichprobengrößen (0 und 1 seien ausgenommen).
Dann ist (asymptotisch) die Verteilung unter Benutzung von https://en.wikibooks.org/wiki/Probability/Transformation_of_Probability_Densities#Derivation_using_the_Delta_Distribution gegeben durch:
  für y>0, 0 sonst. (Eventuell wird das Ergebnis für kleine Stichprobengrößen noch besser, falls man die asymptotische Normalverteilung von   auf den Bereich von 0 bis 1 stutzt...)
Da es schon länger her ist, dass ich soetwas gerechnet habe, habe ich es numerisch mit Simulationen überprüft:
  • Normierung:   scheint numerisch zu gelten
  • ich habe mehrere tausend Male   Bernoulliverteilte Zufallszahlen gezogen und jedes mal deren Mittelwert sowie 1/Mittelwert berechnet. Dann habe ich ein Histogramm der Verteilung der Realisierungen   erzeugt und mit f(y) verglichen, das sah sehr gut aus, bereits ab n=300. Dabei fiel auf, dass   die Schiefe im Histogramm ganz gut wiedergeben konnte. Je größer n wurde umso besser wurde das Histogramm durch   beschrieben.
Was denkst du, ist das auch eine bekannte asymptotische Näherung? Welche Näherung ist besser bei kleinen Stichprobengrößen? Siehst du einen Rechenfehler? Habe ich mich verrechnet? biggerj1 (Diskussion) 09:09, 4. Nov. 2023 (CET)Beantworten
Das ist approximativ die Verteilung von  , falls  , aber keine Approximation durch eine Normalverteilung. Approximativ deswegen, weil   mit positiver Wahrscheinlichkeit negativ ist, allerdings gilt  . Bei asymptotisch begründeten Approximationen ist zunächst unklar, was sich bei kleinen   tut. Für jedes fixierte   gibt es wahrscheinlich andere Bereiche von  -Werten, wo die eine oder die andere Approximation besser ist. Besonders heikel sind Werte von p in der Nähe von 0 oder 1, da dann die Verteilung von   sehr schief ist. Das wäre wohl eine interessante Forschungsfragestellung, falls es nicht schon längst gemacht ist. Aber das herauszubekommen, ist viel Arbeit, denn untersucht und publiziert worden ist das vielleicht schon vor langer Zeit. --Sigma^2 (Diskussion) 13:13, 4. Nov. 2023 (CET)Beantworten
Danke dir für deine Zeit! biggerj1 (Diskussion) 22:08, 5. Nov. 2023 (CET)Beantworten
Math world hat noch eine Formel für eine asymptotische Varianz des Schätzers: https://mathworld.wolfram.com/BuffonsNeedleProblem.html denkst du das passt in den Artikel? biggerj1 (Diskussion) 22:13, 5. Nov. 2023 (CET)Beantworten
Ja, das passt. Es ist exakt die Varianz der asymptotischen Normalverteilung. --Sigma^2 (Diskussion) 10:50, 6. Nov. 2023 (CET)Beantworten
Ich habe die Formel für die asymptotische Varianz eingefügt. Vielleicht magst du ja noch etwas über die Normalverteilungsapproximation schreiben? Beste Grüße biggerj1 (Diskussion) 21:57, 22. Nov. 2023 (CET)Beantworten
@Sigma^2: Würdest du mal schauen ob ich die Beschreibung der Verteilung von   richtig formuliert habe? Falls ja, können wir den Punkt hier gerne schließen. biggerj1 (Diskussion) 15:24, 29. Nov. 2023 (CET)Beantworten