Diskussion:Motzkin-Zahl
Der Artikel „Motzkin-Zahl“ wurde im März 2020 für die Präsentation auf der Wikipedia-Hauptseite in der Rubrik „Schon gewusst?“ vorgeschlagen. Die Diskussion ist hier archiviert. So lautete der Teaser auf der damaligen Hauptseite vom 9.04.2020; die Abrufstatistik zeigt die täglichen Abrufzahlen dieses Artikels. |
Zusammenhang der beiden Methoden
BearbeitenDanke für den Artikel. Ich fände sehr interessant, warum die Anzahl der Möglichkeiten, sich nicht schneidende Sehnen zu zeichnen identisch ist mit der Alternativen Interpretation der Linien auf einem Gitter. Das erscheint mir überhaupt nicht offensichtlich und sollte erläutert werden. --Jean-Hyacinthe (Diskussion) 13:34, 29. Mär. 2020 (CEST)
- Die Spalten des Gitters entsprechen quasi den Punkten einmal rundum. Dabei steht eine waagerechte Linie im Gitter für einen freien Punkt, während eine aufsteigende Linie einer Verbindung zur nächsten absteigenden Linie in der gleichen Zeile entspricht. Also wenn z.B. Spalte 1 aufsteigt und Spalte 3 absteigt, kann dazwischen nur eine Waagerechte liegen. So wie als Kreis betrachtet der Punkt 2 frei bleiben muss, wenn Punkt 1 mit Punkt 3 verbunden ist. --77.13.200.252 17:16, 9. Apr. 2020 (CEST)
- Im Artikel fehlt es noch. --2A02:8388:6281:F080:A0F4:6F5F:5EB9:CB32 04:06, 7. Sep. 2020 (CEST)
Triviale Beispiele
BearbeitenM.E. gibt es für sowie Punkte keine Möglichkeit, eine Sehne durch diese Zahl von Punkten zu konstruieren (für ggf. viele Möglichkeiten). Daher würde ich erwarten (ggf. undefiniert). Da es für Punkte genau eine Sehne gibt, wäre . Zu diesen trivalen Beispielen habe ich in den Quellen nichts gefunden. Es ist aber laut en:Motzkin number sowie Sergei K. Lando: Lectures on Generating Functions. American Mathematical Society, 2003, ISBN 0-8218-3481-9, S. 32 (eingeschränkte Vorschau in der Google-Buchsuche [abgerufen am 9. April 2020]). Habe ich etwas übersehen, oder wo liegt der Denkfehler? Liegt es daran, dass sich die ursprüngliche Definition nicht auf Punkte auf einem Kreis stützt? --Phrontis (Diskussion) 09:43, 9. Apr. 2020 (CEST)
- Ich glaube, das liegt daran, das in dem Beispiel der Kreis OHNE eine Schnittlinie immer mitgezählt wird. Die Gründe dafür sind mir aber auch nicht klar. Bei n=0 gibt es also nur einen leeren Kreis, genauso bei n=1. Bei n=2 gibt es den leeren Kreis und eine Sekante die die zwei Punkte verbindet. --Pentaclebreaker (Diskussion) 10:22, 9. Apr. 2020 (CEST)
- Irgendwie ist der "Schon gewusst" Artikel vom 9.4.2020 falsch. Da steht das "die vierte Motzkin Zahl ist 9". Allerdings ist sie in der Reihe die FÜNFTE Zahl, da man bei n=0 anfängt. Irgendwas stimmt da nicht^^ --Pentaclebreaker (Diskussion) 10:44, 9. Apr. 2020 (CEST)
- Dein Gedankengang stimmt nicht. In der Mathematik ist die n-te Motzkin-Zahl die Anzahl der verschiedenen Möglichkeiten (usw.)... Demnach ist die nullte Motzkin-Zahl (n=0) = 1, die vierte Motzkin-Zahl (n=4) gleich 9. --Blutgretchen (Diskussion) 20:00, 9. Apr. 2020 (CEST)
- Irgendwie ist der "Schon gewusst" Artikel vom 9.4.2020 falsch. Da steht das "die vierte Motzkin Zahl ist 9". Allerdings ist sie in der Reihe die FÜNFTE Zahl, da man bei n=0 anfängt. Irgendwas stimmt da nicht^^ --Pentaclebreaker (Diskussion) 10:44, 9. Apr. 2020 (CEST)
Motzkin-Zahl 2
BearbeitenWieso ergeben sich für M(2) zwei Möglichkeiten, die Punkte zu verbinden. Wenn ich mir das vorstelle, fällt mir nur eine Möglichkeit ein, zwei Punkte zu verbinden. Wo ist mein Denkfehler? --TorPedo (Diskussion) 13:20, 9. Apr. 2020 (CEST)
- Du kannst ja auch gar keine Linie malen. --95.90.244.7 14:02, 9. Apr. 2020 (CEST)
Leerer Kreis ohne Linien
BearbeitenWarum ist der leere Kreis ohne Linien eine Kreissehne? --2001:16B8:2294:BA00:4863:1185:221D:123C 21:24, 9. Apr. 2020 (CEST)
- Hängt wahrscheinlich mit diesem Teil der Definition zusammen (erster Satz der Einleitung): „... wobei nicht notwendigerweise jeder Punkt durch eine Sehne berührt werden muss.“ Die sind dann wohl außerhalb. eryakaas • D 13:06, 10. Apr. 2020 (CEST)
- dieser letzte Teil dieses Satzes ist sowieso Unsinn. Da eine Gerade NIE mehr als 2 Punkte eines Kreises berühren kann!! (nicht signierter Beitrag von 2001:16b8:221a:b500:d91e:f603:5de5:355d (Diskussion) 14:06, 11. April 2020)
- Sagt keiner. Jeder Punkt durch irgendeine Sehne. Davon gibts genug. eryakaas • D 19:57, 13. Apr. 2020 (CEST)
- Wenn ich von den 4 Punkten einen mit keiner Sehne berühre, dann wäre die vierte Motzkin Zahl 4. --2001:16B8:22DD:D900:4956:B225:4F57:F879 11:06, 14. Apr. 2020 (CEST)
- Sagt keiner. Jeder Punkt durch irgendeine Sehne. Davon gibts genug. eryakaas • D 19:57, 13. Apr. 2020 (CEST)
- dieser letzte Teil dieses Satzes ist sowieso Unsinn. Da eine Gerade NIE mehr als 2 Punkte eines Kreises berühren kann!! (nicht signierter Beitrag von 2001:16b8:221a:b500:d91e:f603:5de5:355d (Diskussion) 14:06, 11. April 2020)
Der leere Kreis
BearbeitenIch bin ja kein Mathematiker, aber nach allen Logikregeln darf man den Kreis mit n=0 Punkten nicht als Möglichkeit mitzählen! Wenn ich eine Münze werfe, wieviele Möglichkeiten gibt es dann welche Seite oben ist? 3, weil entweder Kopf oder Zahl oder ich werfe einfach nicht. Das ist Blödsinn^^ --2003:CF:F2C:887:6422:E62F:9614:9EDE 17:53, 10. Apr. 2020 (CEST)
- Außer du definierst es so. eryakaas • D 20:27, 10. Apr. 2020 (CEST)