Eine komplexe Differentialform ist ein mathematisches Objekt aus der komplexen Geometrie. Eine komplexe Differentialform ist eine Entsprechung der (reellen) Differentialformen auf komplexen Mannigfaltigkeiten. Genauso wie im reellen Fall bilden auch die komplexen Differentialform eine graduierte Algebra. Eine komplexe Differentialform vom Grad (oder kurz k-Form) kann auf eindeutige Art und Weise in zwei Differentialformen zerlegt werden, die dann den Grad beziehungsweise mit haben. Um diese Zerlegung zu betonen, spricht man auch von (p,q)-Formen. Bei dieser kurzen Sprechweise wird auch klar, dass es sich um komplexe Differentialformen handelt, denn reelle Formen besitzen keine solche Zerlegung. Eine wichtige Rolle spielt der Kalkül der komplexen Differentialformen in der Hodge-Theorie.
Die Räume, in denen nur Basisvektoren der Form vorkommen, werden verbal als (1,0)-Formen und formelmäßig mit bezeichnet. Analog dazu ist der Raum der (0,1)-Formen, also der Kovektoren, welche nur Basisvektoren der Form haben. Diese beiden Räume sind stabil, das heißt unter holomorphen Koordinatenwechseln werden diese Räume in sich selbst abgebildet. Aus diesem Grund sind die Räume und komplexe Vektorbündel über .
Mit Hilfe des äußeren Produktes von komplexen Differentialformen, welches genauso wie für reelle Differentialformen definiert ist, kann man nun die Räume der -Formen durch
definieren. Weiter definiert man noch den Raum als die direkte Summe
der -Formen mit . Dies ist isomorph zur direkten Summe der Räume der reellen Differentialformen. Außerdem ist für eine Projektion
definiert, welche jeder komplexen Differentialform vom Grad ihre -Zerlegung zuordnet.
Eine -Form hat also in lokalen Koordinaten die eindeutige Darstellung
Da diese Darstellung doch sehr lang ist, ist es üblich die Kurzschreibweise
Erfüllt eine Differentialform die Gleichung , so spricht man von einer holomorphen Differentialform. In lokalen Koordinaten kann man diese Formen durch
darstellen, wobei holomorphe Funktionen sind. Der Vektorraum der holomorphen -Formen auf wird mit notiert.
Für diese Operatoren gilt eine Leibniz-Regel. Seien und , dann gilt
und
Aus der Identität
folgt , und , denn alle drei Terme sind von unterschiedlichem Grad. Die Operatoren und eignen sich also für eine Kohomologietheorie. Diese trägt den Namen Dolbeault-Kohomologie.
Raymond O. Wells: Differential analysis on complex manifolds. Prentice-Hall, Englewood Cliffs NJ 1973, ISBN 0-13-211508-5.
Lars Hörmander: An Introduction to Complex Analysis in Several Variables (= North-Holland Mathematical Library 7). 2. revised edition. North-Holland u. a., Amsterdam u. a. 1973, ISBN 0-7204-2450-X.