Das Levi-Civita-Symbol im Dreidimensionalen repräsentiert einen besonders einfachen dreistufigen Tensor.

Ein Tensor ist ein mathematisches Objekt aus der linearen Algebra. Es gibt zwei geläufige äquivalente Möglichkeiten Tensoren zu definieren. So kann man Tensoren als Synonym für multilineare Abbildungen verstehen. Also als eine Funktion, die von mehreren Variablen abhängt und in jeder dieser Variablen linear ist. So kann man beispielsweise eine Matrix als Tensor verstehen, wenn man diese beispielsweise mit dem üblichen Matrix-Vektor-Produkt als lineare Abbildung oder wenn man sie als Koordinatendarstellung einer einer bilinearen Abbildung auffasst. Andere Beispiele für multilineare Abbildungen sind die Determinante oder die Rotation. Alternativ wird der Tensorbegriff oftmals mittels einer universellen Eigenschaft - dem Tensorprodukt - definiert.

Der Begriff wurde ursprünglich in der Physik eingeführt und erst später mathematisch präzisiert. Im mathematischen Teilgebiet der Differentialgeometrie werden die Methoden der Tensorrechnung vermehrt eingesetzt. Hier treten Tensoren meist als Tensorfelder auf. Die Methoden zur Untersuchung dieser Felder in der Differentialgeometrie werden dem mathematischen Teilgebiet der Tensoranalysis zugeschrieben.

Arten von Tensoren

Bearbeiten
Das Levi-Civita-Symbol im Dreidimensionalen repräsentiert einen besonders einfachen dreistufigen Tensor.

Ausgehend von einem endlichdimensionalen Vektorraum bezeichnet man Skalare als Tensoren vom Typ , Vektoren als Tensoren vom Typ und Kovektoren als Tensoren vom Typ . Tensoren höherer Stufe definiert man als multilineare Abbildungen mit Tensoren geringerer Stufe als Argumente und Abbildungswerte. So kann etwa ein Tensor vom Typ als lineare Abbildung zwischen Vektorräumen oder als bilineare Abbildung mit einem Vektor und einem Kovektor als Argumente aufgefasst werden.

Beispielsweise ist der mechanische Spannungstensor in der Physik ein Tensor zweiter Stufe – eine Zahl (Stärke der Spannung) oder ein Vektor (eine Hauptspannungsrichtung) reichen nicht immer zur Beschreibung des Spannungszustandes eines Körpers aus. Als Tensor vom Typ aufgefasst ist er eine lineare Abbildung, die einem Flächenelement (als Vektor) die darauf wirkende Kraft (als Kovektor) zuordnet, oder eine bilineare Abbildung, die einem Flächenelement und einem Verschiebungsvektor die Arbeit zuordnet, die bei der Verschiebung des Flächenstücks unter dem Einfluss der wirkenden Spannung verrichtet wird.

Bezüglich einer fest gewählten Vektorraumbasis erhält man die folgenden Darstellungen der verschiedenen Typen von Tensoren:

  • Ein Skalar durch eine einzelne Zahl.
  • Ein Vektor durch einen Spaltenvektor.
  • Ein Kovektor durch einen Zeilenvektor.
  • Ein Tensor zweiter Stufe durch eine Matrix.

Die Anwendung des Spannungstensors auf ein Flächenelement ist dann z. B. durch das Produkt einer Matrix mit einem Spaltenvektor gegeben. Die Koordinaten von Tensoren höherer Stufe können entsprechend in ein höherdimensionales Schema angeordnet werden. So können diese Komponenten eines Tensors anders als die eines Spaltenvektors oder einer Matrix mehr als ein oder zwei Indizes haben. Ein Beispiel für einen Tensor dritter Stufe, der drei Vektoren des als Argumente hat, ist die Determinante einer 3×3-Matrix als Funktion der Spalten dieser Matrix. Bezüglich einer Orthonormalbasis wird er durch das Levi-Civita-Symbol repräsentiert.

Wort- und Begriffsgeschichte

Bearbeiten

Das Wort Tensor (lat. tendo „ich spanne“) wurde in den 1840er Jahren von William Rowan Hamilton in die Mathematik eingeführt; er bezeichnete damit den Absolutbetrag seiner Quaternionen, also keinen Tensor im modernen Sinn.

James Clerk Maxwell scheint den Spannungstensor, den er aus der Elastizitätstheorie in die Elektrodynamik übertrug, selbst noch nicht so genannt zu haben.

In seiner modernen Bedeutung, als Verallgemeinerung von Skalar, Vektor, Matrix, wird das Wort Tensor erstmals von Woldemar Voigt in seinem Buch Die fundamentalen physikalischen Eigenschaften der Krystalle in elementarer Darstellung (Leipzig, 1898) eingeführt.

Unter dem Titel absolute Differentialgeometrie entwickelten Gregorio Ricci-Curbastro und dessen Schüler Tullio Levi-Civita um 1890 die Tensorrechnung auf riemannschen Mannigfaltigkeiten; einem größeren Fachpublikum machten sie ihre Ergebnisse 1900 mit dem Buch Calcolo differenziale assoluto zugänglich, das bald in andere Sprachen übersetzt wurde, und aus dem sich Albert Einstein die mathematischen Grundlagen aneignete, die er zur Formulierung der allgemeinen Relativitätstheorie benötigte. Einstein selbst prägte 1916 den Begriff Tensoranalysis und trug mit seiner Theorie maßgeblich dazu bei, den Tensorkalkül bekannt zu machen; er führte überdies die einsteinsche Summenkonvention ein, nach der über doppelt auftretende Indizes unter Weglassung der Summenzeichen summiert wird.

Einsteinsche Summenkonvention

Bearbeiten

Insbesondere in der Tensoranalysis (einem Teilgebiet der Differentialgeometrie) und der Physik ist die einsteinsche Summenkonvention beliebt. Sie verkürzt die Schreibweise von Tensoren. Die Konvention besagt, dass Summenzeichen weggelassen werden können und dabei automatisch über Indizes summiert wird, welche einmal oben und einmal unten stehen. Ein einfaches Beispiel ist die Matrizenmultiplikation. Seien   zwei Matrizen mit den Komponenten   und  . Dann lautet die Komponentendarstellung des Matrixproduktes

 

Mit der einsteinschen Summenkonvention schreibt man

 

Ko- und Kontravarianz von Vektoren

Bearbeiten

Die Begriffe ko- und kontravariant beziehen sich im Zusammenhang mit der Tensorrechnung auf die Koordinatendarstellungen von Vektoren, Linearformen und Tensoren höherer Stufe. Sie beschreiben, wie sich solche Koordinatendarstellungen bezüglich eines Basiswechsels im zugrundeliegenden Vektorraum verhalten.

Legt man in einem  -dimensionalen Vektorraum   eine Basis   fest, so kann jeder Vektor   dieses Raumes durch ein Zahlentupel  , seine Koordinaten, gemessen und dargestellt werden,  . (Hier und im weiteren verwenden wir die Einsteinsche Summenkonvention.) Geht man zu einer anderen Basis von   über, so ändert sich der Vektor selbst nicht, aber die Koordinaten der neuen Basis werden andere sein. Genauer: Ist die neue Basis durch   in der alten Basis bestimmt, so ergeben sich die neuen Koordinaten durch Vergleich in

 

also   oder

 .

Dreht man zum Beispiel eine orthogonale Basis in einem dreidimensionalen euklidischen Raum   um   um die z-Achse, so drehen sich die Koordinatenvektoren im Koordinatenraum   ebenfalls um die z-Achse, aber in der entgegengesetzten Richtung um  .

Dieses der Basistransformation entgegengesetzte Transformationsverhalten nennt man kontravariant. Oft werden Vektoren zur Abkürzung der Notation mit ihren Koordinatenvektoren identifiziert, so dass Vektoren allgemein als kontravariant bezeichnet werden.

Eine Linearform oder Kovektor   ist dagegen eine skalarwertige lineare Abbildung   auf dem Vektorraum. Man kann ihr als Koordinaten ihre Werte auf den Basisvektoren,  , zuordnen. Die Koordinatenvektoren einer Linearform transformieren sich wie das Basistupel als

 

weshalb man dieses Transformationsverhalten kovariant nennt. Identifiziert man wieder Linearformen mit ihren Koordinatenvektoren, so bezeichnet man auch allgemein Linearformen als kovariant. Hierbei geht, wie bei Vektoren, die zugrundeliegende Basis aus dem Kontext hervor. Man spricht in diesem Kontext auch von Dualvektoren.

Definition

Bearbeiten

Im Folgenden sind alle Vektorräume endlichdimensional. Mit   bezeichne man die Menge aller Linearformen aus dem  -Vektorraum   in den Körper  . Sind   Vektorräume über  , so werde der Vektorraum der Multilinearformen   mit   bezeichnet.

Ist   ein  -Vektorraum, so wird mit   sein Dualraum bezeichnet. Dann ist   isomorph zum Tensorprodukt

  (vergleiche hierzu den Abschnitt Tensorprodukte und Multilinearformen).

Setze nun für einen fixierten Vektorraum   mit Dualraum  

 

mit   Einträgen von   und   Einträgen von  . Dieser Vektorraum realisiert das Tensorprodukt

 

Elemente dieser Menge heißen Tensoren, kontravariant der Stufe   und kovariant der Stufe  . Kurz spricht man von Tensoren vom Typ  . Die Summe   heißt Stufe oder Rang des Tensors.

Es gibt natürliche Isomorphismen der folgenden Art:

 

Das heißt, man kann Tensoren der Stufe   auch induktiv als multilineare Abbildungen zwischen Tensorräumen geringerer Stufe definieren. Dabei hat man für einen Tensor eines bestimmten Typs mehrere äquivalente Möglichkeiten.

In der Physik sind die Vektorräume in der Regel nicht identisch, z. B. kann man einen Geschwindigkeitsvektor und einen Kraftvektor nicht addieren. Man kann jedoch die Richtungen miteinander vergleichen, d. h. die Vektorräume bis auf einen skalaren Faktor miteinander identifizieren. Daher kann die Definition von Tensoren des Typs   entsprechend angewendet werden. Es sei außerdem erwähnt, dass (dimensionsbehaftete) Skalare in der Physik Elemente aus eindimensionalen Vektorräumen sind und dass Vektorräume mit Skalarprodukt mit ihrem Dualraum identifiziert werden können. Man arbeitet z. B. mit Kraftvektoren, obwohl Kräfte ohne die Verwendung des Skalarprodukts als Kovektoren anzusehen sind.

Beispiele

Bearbeiten

Im Folgenden seien   und   endlichdimensionale Vektorräume.

  • Die Menge der (0,0)-Tensoren ist isomorph zum zugrunde liegenden Körper  . Sie ordnen keiner Linearform und keinem Vektor ein Körperelement zu. Deshalb die Bezeichnung als (0,0)-Tensoren.
  • (0,1)-Tensoren ordnen keiner Linearform und einem Vektor eine Zahl zu, entsprechen somit den Linearformen   auf  .
  • (1,0)-Tensoren ordnen einer Linearform und keinem Vektor eine Zahl zu. Sie sind somit Elemente des bidualen Vektorraums  . Sie entsprechen bei endlichdimensionalen den Ausgangsvektorräumen  , da hier   gilt (siehe Isomorphismus).
  • Eine lineare Abbildung   zwischen endlichdimensionalen Vektorräumen kann als Element von   aufgefasst werden und ist dann ein (1,1)-Tensor.
  • Eine Bilinearform   lässt sich als ein Element von   auffassen, also als ein (0,2)-Tensor. Insbesondere lassen sich also Skalarprodukte als (0,2)-Tensor auffassen.
  • Das Kronecker-Delta   ist wieder ein (0,2)-Tensor. Es ist ein Element von  , und somit also eine multilineare Abbildung  . Multilineare Abbildungen sind durch die Wirkung auf die Basisvektoren eindeutig bestimmt. So ist das Kronecker-Delta eindeutig durch
 
bestimmt.
  • Die Determinante von  -Matrizen, aufgefasst als alternierende Multilinearform der Spalten, ist ein (0,n)-Tensor. Bezüglich einer Orthonormalbasis wird er durch das Levi-Civita-Symbol ("Epsilontensor") dargestellt. Speziell in drei Dimensionen ist die Determinante   ein Tensor dritter Stufe und es gilt   für die Elemente einer Orthonormalbasis. Sowohl das Kronecker-Delta als auch das Levi-Civita-Symbol werden häufig verwendet, um Symmetrieeigenschaften von Tensoren zu untersuchen. Das Kronecker-Delta ist symmetrisch bei Vertauschungen der Indizes, das Levi-Civita-Symbol antisymmetrisch, so dass man mit ihrer Hilfe Tensoren in symmetrische und antisymmetrische Anteile zerlegen kann.
  • Ein weiteres Beispiel für einen kovarianten Tensor 2. Stufe ist der Trägheitstensor.
  • In der Elastizitätstheorie verallgemeinert man die hookesche Gleichung über den Zusammenhang zwischen Kräften und zugehörigen Dehnungen und Verzerrungen in einem elastischen Medium ebenfalls mit Hilfe der Tensorrechnung durch Einführung des Verzerrungstensors, der Verzerrungen, Deformationen beschreibt, und des Spannungstensors, der die die Deformationen verursachenden Kräfte beschreibt. Siehe dazu auch unter Kontinuumsmechanik nach.
  • Sei   ein Vektorraum mit Skalarprodukt  . Wie oben bereits erwähnt, ist das Skalarprodukt   linear in beiden Argumenten, also ein (0,2)-Tensor bzw. ein zweifach kovarianter Tensor. Man spricht auch von einem metrischen Tensor oder kurz „Metrik“. Dabei ist zu beachten, dass   selbst keine Metrik im Sinne eines metrischen Raums ist, aber eine solche erzeugt. Mit   werden die Koordinaten der Metrik bezüglich einer Basis des Vektorraums   bezeichnet;   und   seien die Koordinaten der Vektoren   und   bezüglich derselben Basis. Für die Abbildung zweier Vektoren   und   unter der Metrik   gilt deshalb
 
Der Übergang zwischen ko- und kontravarianten Tensoren lässt sich mittels der Metrik durch
 
bewerkstelligen.
In der Differentialgeometrie auf Riemannschen Mannigfaltigkeiten ist diese Metrik zusätzlich eine Funktion des Ortes. Eine tensorwertige Funktion des Ortes wird Tensorfeld genannt, im Fall des metrischen Tensors speziell riemannsche Metrik.

Komponentendarstellung

Bearbeiten

Tensoren weisen für jeden Vektor, welcher als Argument übergeben wird, eine lineare Abbildung auf. Die Multilinearität von Tensoren ermöglicht es, den Wert der Funktion als Funktion auf beliebigen Basisvektoren   auszudrücken. Die Werte, auf die der Tensor die Basisvektoren abbildet, werden als die Komponenten des Tensors bezeichnet.[1]

Beispiel

Für einen Tensor   mit dem Rang 1 gilt aufgrund der Multilinearität von   für alle   der Zusammenhang:

 

Gleichermaßen gilt für einen Tensor   vom Rang 2 für alle   der Zusammenhang:

 ,

sowie

 .

Seien   Basisvektoren des Raums  , so lassen sich die Vektoren   wie folgt in Komponenten darstellen:

 

Dann gilt für den Tensor   vom Rang 2:

 

Die Werte   sind hierbei die Komponenten des Tensors für die jeweiligen Basisvektoren. Der Tensor selbst ist hierbei – im Gegensatz zu den Komponenten des Tensors – unabhängig davon, welches Basissystem verwendet wird.

Mit Hilfe der Komponenten kann ein Tensor dargestellt werden. Beispielsweise kann ein Tensor   mit Rang 2 in einem gegebenen Basissystem   wie folgt als Matrix dargestellt werden:

 

Dadurch lässt sich der Wert   im Rahmen des entsprechenden Basissystems mit Hilfe der Matrixmultiplikation berechnen:

 
Beispiel

Es soll mit Hilfe des Trägheitstensors   die Rotationsenergie   eines starren Körpers mit der Winkelgeschwindigkeit   berechnet werden:

 

Äußeres Tensorprodukt

Bearbeiten

Als (äußeres) Tensorprodukt oder Tensormultiplikation bezeichnet man eine Verknüpfung   zwischen zwei Tensoren. Sei   ein Vektorraum und seien   und   Tensoren. Das (äußere) Tensorprodukt von   und   ist der Tensor  , der durch

 

definiert ist. Hierbei sind die   und die  .

Tensoralgebra

Bearbeiten

Sei   ein Vektorraum über einem Körper  . Dann ist durch

 

die sogenannte Tensoralgebra definiert. Mit der Multiplikation, die auf den homogenen Bestandteilen durch das Tensorprodukt gegeben ist, wird   zu einer unitären assoziativen Algebra.

Basis & Dimension

Bearbeiten

Sei   wie oben ein Vektorraum. Dann sind die Räume   ebenfalls wieder Vektorräume. Weiterhin sei   nun endlichdimensional mit der Basis  . Die duale Basis wird mit   bezeichnet. Der Raum   der Tensoren ist dann ebenfalls endlichdimensional und

 

ist eine Basis dieses Raumes. Das heißt, jedes Element   kann durch

 

dargestellt werden. Die Dimension dieses Vektorraums ist  . Wie in jedem endlichdimensionalen Vektorraum reicht es auch im Raum der Tensoren zu sagen, wie eine Funktion auf der Basis operiert.

Da die obige Summendarstellung sehr viel Schreibarbeit mit sich bringt, wird oftmals die einsteinsche Summenkonvention verwendet. In diesem Fall schreibt man also

 

Oftmals identifiziert man die Komponenten des Tensors mit dem Tensor an sich. Siehe dafür unter Tensordarstellungen der Physik nach.

Basiswechsel und Koordinatentransformation

Bearbeiten

Seien   und   jeweils unterschiedliche Basen der Vektorräume  . Jeder Vektor, also auch jeder Basisvektor   kann als Linearkombination der Basisvektoren   dargestellt werden. Der Basisvektor   werde dargestellt durch:

 

Die Größen   bestimmen also die Basistransformation zwischen den Basen   und  . Das gilt für alle  . Dieses Verfahren wird Basiswechsel genannt.

Ferner seien   die Komponenten des Tensors   bezüglich der Basis  . Dann ergibt sich für das Transformationsverhalten der Tensorkomponenten die Gleichung

 

Es wird in der Regel zwischen der Koordinatendarstellung des Tensors   und der Transformationsmatrix   unterschieden. Die Transformationsmatrix   ist zwar eine indizierte Größe, aber kein Tensor. Im euklidischen Raum sind das Drehmatrizen und in der speziellen Relativitätstheorie z. B. Lorentz-Transformationen, die sich auch als „Drehungen“ in einem vierdimensionalen Minkowskiraum auffassen lassen. Man spricht in diesem Fall auch von Vierertensoren und Vierervektoren.

Invarianten von Tensoren 1. und 2. Stufe

Bearbeiten

Als Invarianten bezeichnet man aus Tensorkoordinaten gebildete Skalare, die sich unter orthogonalen Koordinatentransformation nicht ändern. Für Tensoren 1. Stufe (Vektoren) führt die Bildung der vom Skalarprodukt induzierten Norm zu einer Invarianten

 

Für Tensoren 2. Stufe im dreidimensionalen euklidischen Raum lassen sich im Allgemeinen sechs irreduzible Invarianten (d. h. Invarianten, die nicht durch andere Invarianten ausgedrückt werden können) finden:

 

Im Falle von symmetrischen Tensoren 2. Stufe (z. B. dem Verzerrungstensor) fallen die Invarianten   und   zusammen. Außerdem lässt sich   über die anderen 3 Invarianten darstellen (ist also nicht mehr irreduzibel). Die Determinante ist auch eine Invariante, sie lässt sich beispielsweise für  -Matrizen über die irreduziblen Invarianten  ,   und   darstellen als

 [2]

Für antisymmetrische Tensoren gilt  ,  ,   und   lässt sich wieder auf   zurückführen.[3] Somit haben im dreidimensionalen euklidischen Raum symmetrische Tensoren 2. Stufe drei irreduzible Invarianten und antisymmetrische Tensoren 2. Stufe eine irreduzible Invariante.

Operationen auf Tensoren

Bearbeiten

Neben dem Tensorprodukt gibt es für (r,s)-Tensoren weitere wichtige Operationen.

Inneres Produkt

Bearbeiten

Das innere Produkt eines Vektors   (bzw. eines (Ko)Vektors  ) mit einem Tensor   ist der   (bzw.  -Tensor, welcher durch

 

bzw. durch

 

definiert ist. Dies bedeutet, dass der  -Tensor   an einem festen Vektor   bzw. festen Kovektor   ausgewertet wird.

Tensorverjüngung

Bearbeiten

Gegeben sei ein (r,s)-Tensor und   und  . Die Tensorverjüngung   bildet den Tensor

 

auf den Tensor

 

ab. Dieser Vorgang heißt Tensorverjüngung oder Spurbildung. Im Fall von (1,1)-Tensoren entspricht die Tensorverjüngung

 

unter der Identifizierung   der Spur eines Endomorphismus.

Mit Hilfe der einsteinschen Summenkonvention kann man die Tensorverjüngung sehr kurz darstellen. Seien beispielsweise   die Koeffizienten (bzw. Koordinaten) des zweistufigen Tensors T bezüglich einer gewählten Basis. Will man diesen (1,1)-Tensor verjüngen, so schreibt man oft anstatt   nur die Koeffizienten  . Die einsteinsche Summenkonvention besagt nun, dass über alle gleichen Indizes summiert wird und somit   ein Skalar ist, die mit der Spur des Endomorphismus übereinstimmt. Der Ausdruck   ist hingegen nicht definiert, weil nur über gleiche Indizes summiert wird, wenn einer oben und einer unten steht. Hingegen ist also   ein Tensor erster Stufe.

Pull-Back (Rücktransport)

Bearbeiten

Sei   eine lineare Abbildung zwischen Vektorräumen, welche kein Isomorphismus zu sein braucht. Der Rücktransport von   sei eine Abbildung  , welche durch

 

definiert ist. Dabei ist   und  .

Push-Forward

Bearbeiten

Sei   ein Vektorraumisomorphismus. Definiere den Push-Forward von   durch   mit

 

Dabei ist  ,   und  . Mit   wird der Rücktransport der Linearform   notiert. Konkret heißt dies  . Analog zum Rücktransport kann man beim Push-Forward auf die Isomorphie von   verzichten und diese Operation nur für  -Tensoren definieren.

Tensorproduktraum

Bearbeiten

In diesem Abschnitt werden Tensorprodukträume definiert. Diese werden typischerweise in der Algebra betrachtet. Diese Definition ist allgemeiner als die der (r,s)-Tensoren, da hier die Tensorräume aus unterschiedlichen Vektorräumen konstruiert werden können.

Die universelle Eigenschaft

Bearbeiten
 
Universelle Eigenschaft des Tensorproduktes

Es seien   und   Vektorräume über dem Körper  . Sind   weitere  -Vektorräume,   eine beliebige bilineare Abbildung und   eine lineare Abbildung, dann ist auch die Verknüpfung   eine bilineare Abbildung. Ist also eine bilineare Abbildung gegeben, so kann man daraus auch beliebig viele weitere bilineare Abbildungen konstruieren. Die Frage, die sich ergibt, ist, ob es eine bilineare Abbildung gibt, aus der auf diese Art, durch Verknüpfung mit linearen Abbildungen, alle bilinearen Abbildungen auf   (auf eindeutige Weise) konstruiert werden können. Ein solches universelles Objekt, d.h. die bilineare Abbildung samt ihrem Bildraum, wird als Tensorprodukt von V und W bezeichnet.

Definition: Als Tensorprodukt der Vektorräume   und  , wird jeder  -Vektorraum   bezeichnet, zu dem es eine bilineare Abbildung   gibt, die die folgende universelle Eigenschaft erfüllt:

Zu jeder bilinearen Abbildung   von   in einen Vektorraum   existiert genau eine lineare Abbildung  , so dass für alle   gilt
 

Gibt es einen solchen Vektorraum  , so ist er bis auf Isomorphie eindeutig. Man schreibt   und  . Die universelle Eigenschaft kann also als   geschrieben werden. Zur Konstruktion solcher Produkträume sei auf den Artikel Tensorprodukt verwiesen.

Tensor als Element des Tensorproduktes

Bearbeiten

In der Mathematik sind Tensoren Elemente von Tensorprodukten.

Es sei   ein Körper und es seien   Vektorräume über dem Körper  .

Das Tensorprodukt   von   ist ein  -Vektorraum, dessen Elemente Summen von Symbolen der Form

 

sind. Dabei gelten für diese Symbole die folgenden Rechenregeln:

  •  
  •  

Die Tensoren der Form   heißen elementar. Jeder Tensor lässt sich als Summe von elementaren Tensoren schreiben, aber diese Darstellung ist außer in trivialen Fällen nicht eindeutig, wie man an der ersten der beiden Rechenregeln sieht.

Ist   eine Basis von   (für  ;  ), so ist

 

eine Basis von   Die Dimension von   ist also das Produkt der Dimensionen der einzelnen Vektorräume  

Tensorprodukte und Multilinearformen

Bearbeiten

Der Dualraum von   kann mit dem Raum der  -Multilinearformen

 

identifiziert werden:

  • Ist   eine Linearform auf   so ist die entsprechende Multilinearform
 
  • Ist   eine  -Multilinearform, so ist die entsprechende Linearform auf   definiert durch
 

Sind alle betrachteten Vektorräume endlichdimensional, so kann man

 

miteinander identifizieren, d.h. Elemente von   entsprechen  -Multilinearformen auf  

Tensorprodukte eines Vektorraums und Symmetrie

Bearbeiten

Man kann das Tensorprodukt   eines Vektorraumes   mit sich selbst bilden. Ohne weiteres Wissen über den Vektorraum kann ein Automorphismus des Tensorprodukts definiert werden, der darin besteht, in den reinen Produkten   die Faktoren zu vertauschen,

 .

Da das Quadrat dieser Abbildung die Identität ist, folgt, dass für die Eigenwerte nur die Werte   in Frage kommen.

  • Ein  , welches   erfüllt, heißt symmetrisch. Beispiele sind die Elemente
 .
Die Menge aller symmetrischen Tensoren der Stufe 2 wird mit   bezeichnet.
  • Ein  , welches   erfüllt, heißt antisymmetrisch oder alternierend. Beispiele sind die Elemente
 .
Die Menge aller antisymmetrischen Tensoren der Stufe 2 wird mit   bezeichnet.

Mittels   können Tensorpotenzen von   beliebiger Stufe gebildet werden. Entsprechend können weitere paarweise Vertauschungen definiert werden. Nur sind diese nicht mehr voneinander unabhängig. So lässt sich jede Vertauschung der Stellen   und   auf Vertauschungen mit der ersten Stelle zurückführen:

 

Injektives und projektives Tensorprodukt

Bearbeiten

Falls die Vektorräume, welche man miteinander tensorieren will, eine Topologie besitzen, so ist es wünschenswert, dass ihr Tensorprodukt ebenfalls eine Topologie besitzt. Es gibt natürlich viele Möglichkeiten, eine solche Topologie zu definieren. Das injektive beziehungsweise das projektive Tensorprodukt sind dafür jedoch eine natürliche Wahl.

Tensoranalysis

Bearbeiten

Ursprünglich wurde der Tensorkalkül nicht in dem modernen hier vorgestellten algebraischen Konzept untersucht. Der Tensorkalkül entstand aus Überlegungen zur Differentialgeometrie. Insbesondere Gregorio Ricci-Curbastro und sein Schüler Tullio Levi-Civita haben ihn entwickelt. Man nennt den Tensorkalkül daher auch Ricci-Kalkül. Albert Einstein griff diesen Kalkül in seiner Relativitätstheorie auf, was ihm große Bekanntheit in der Fachwelt einbrachte. Die damaligen Tensoren werden heute als Tensorfelder bezeichnet und spielen in der Differentialgeometrie auch heute noch eine wichtige Rolle. Im Gegensatz zu Tensoren sind Tensorfelder differenzierbare Abbildungen, die jedem Punkt des zugrundeliegenden (oftmals gekrümmten) Raums einen Tensor zuordnen.

Siehe auch

Bearbeiten

Literatur

Bearbeiten
Bearbeiten

Einzelnachweise

Bearbeiten
  1. Referenzfehler: Ungültiges <ref>-Tag; kein Text angegeben für Einzelnachweis mit dem Namen intro.
  2. Prof. Kerstin Weinberg: Vorlesungsskript: Tensoralgebra und -Analysis. (PDF, 235 kB) Universität Siegen, 24. Oktober 2012, abgerufen am 19. Juli 2013.
  3. Heinz Schade, Klaus Neemann: Tensoranalysis. 2. überarbeitete Auflage. de Gruyter, Berlin/New York 2006, ISBN 3-11-018943-7, S. 277 ff.

Kategorie:Algebra Kategorie:Differentialgeometrie